
Efficient Smart Phone Forensics

Based on Relevance Feedback

Saksham Varma Robert J. Walls Brian Lynn Brian Neil Levine
School of Computer Science

University of Massachusetts, Amherst, MA, USA
{svarma, rjwalls, blynn, brian}@cs.umass.edu

ABSTRACT

When forensic triage techniques designed for feature phones are

applied to smart phones, these recovery techniques return hundreds

of thousands of results, only a few of which are relevant to the inves-

tigation. We propose the use of relevance feedback to address this

problem: a small amount of investigator input can efficiently and

accurately rank in order of relevance, the results of a forensic triage

tool. We present LIFTR, a novel system for prioritizing information

recovered from Android phones. We evaluate LIFTR’s ranking al-

gorithm on 13 previously owned Android smart phones and three

recovery engines — DEC0DE, Bulk Extractor, and Strings— us-

ing a standard information retrieval metric, Normalized Discounted

Cumulative Gain (NDCG). LIFTR’s initial ranking improves the

NDCG scores of the three engines from 0.0 to an average of 0.73;

and with as little as 5 rounds of feedback, the ranking score in-

creases to 0.88. Our results demonstrate the efficacy of relevance

feedback for quickly locating useful information among the large

amount of irrelevant data returned by current recovery techniques.

Further, our empirical findings show that a significant amount of

important user information persists for weeks or even months in the

expired space of a phone’s memory. This phenomenon underscores

the importance of using file system agnostic recovery techniques,

which are the type of techniques that benefit most from LIFTR.

Category and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protection

General Terms Forensics, Phones

1. INTRODUCTION
Mobile phones are both a staple of modern life and an abundant

source of information for law enforcement. A suspect’s phone may
contain information about their activities, movements, accomplices,
and potentially even direct evidence of a crime. Understanding
the limits of what information is recoverable from phones is im-
portant for both lawful investigations and for individuals seeking
confidentiality when phones are lost or stolen.

Often, the information contained on a phone is time-sensitive,
and most useful as a means to help propel an ongoing investigation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPSM’14, November 7, 2014, Scottsdale, Arizona, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2955-5/14/11 ...$15.00.

http://dx.doi.org/10.1145/2666620.2666628.

Before sending the phone off to a forensic lab for an examination
that could take months, investigators first employ a process known
as forensic triage to quickly recover important information from the
phone. Triage is intended to be a first step before a more exhaustive
and resource-intensive examination. As the amount and diversity
of data on mobile phones increases, it becomes increasingly chal-
lenging to identify the relevant information within the limited time
available. Our goal is to advance techniques to make this possible.

Previous work on triage has focused on using probabilistic infer-
ence on feature phones [21], and deterministic feature search for
desktop systems [2,6]. In this paper, we show that these existing
approaches encounter significant problems when applied to smart
phones. First, smart phones contain a great deal more information
than feature phones. While feature phones are often limited to less
than 100 MB of storage space, current smart phones store gigabytes
of data. Consequently, locating important information often means
an investigator must sift through an impractical amount of data.

Second, while the relatively limited number of smart phone op-
erating systems would seem to make the investigator’s job easier,
mobile phones are supported by many different file systems and
growing number of proprietary NAND storage devices with poorly
documented flash translation layers (FTLs). Important data fre-
quently lies in the deleted and expired sections of memory (as we
show), and it is often impractical and time consuming to create a
specialized parser for each phone.

Finally, smart phones contain a wider variety of information,
much of which is not relevant to the current investigation. Recover-
ing information from smart phones requires a method of converting
raw data into information. The data may be parsed correctly as a
phone number, text, URL, or date, but it is not always content that
is relevant to the context of the investigation.

We present the design and evaluation of a novel system, LIFTR,
for prioritizing information recovered from Android phones. Our
system is designed to complement existing triage approaches. LIFTR

ranks information according to a combination of scoring and rel-
evance feedback rounds from the investigator. LIFTR is a general
approach that can be used with any data recovery technique that
provides a string representation and offset of the recovered informa-
tion. As we show, current techniques can return thousands, and in
some cases, millions of unranked results per phone. Our approach
prioritizes information relevant to an investigation, enabling the
investigator to complete the triage process quickly and efficiently.

The primary insight behind LIFTR is that once we can locate a
small piece of relevant information, we can quickly locate more by
leveraging the spatial locality of data and semantic relationships
between NAND pages.

LIFTR is especially powerful for recovering information from
expired storage or in cases where the file system cannot be recon-

81

mailto:svarma@cs.umass.edu,rjwalls@cs.umass.edu,blynn@cs.umass.edu,brian@cs.umass.edu

structed — we find that for our set of pre-owned evaluation phones,
upward of half of the NAND pages are expired. Other data on
phones will be easily recoverable because the files are in allocated
storage. In these cases, we expect parsing information is relatively
easy (though labor intensive, it does not present a research chal-
lenge). On the other hand, reconstruction of files from expired
space presents a fundamental problem in forensics [5,16]. Frag-
mentation or loss of critical segments can prevent recovery of a
full file, requiring a specialized parser per application file format,
without guarantees of recovering any information. Systems like
DEC0DE [21] and Bulk Extractor [6] overcome this limitation due
to their file system agnostic inference techniques. However, being
generalized recovery engines, they do not consider the semantics
behind the content recovered and hence return large amounts of irrel-
evant results bearing no connection to the phone user. LIFTR tries to
address these problems using an algorithm for ranking results from
recovery engines in the order of their relevance to the investigation.

We make several contributions.

• We show empirically that previous approaches to forensic triage
(DEC0DE and Bulk Extractor) do not scale to resource-rich
smart phones. For one phone, DEC0DE returned over 6.2
million results, of which only about 12 thousand were relevant.

• We introduce LIFTR, a system that quickly identifies the impor-
tant information by ranking inference results using relevance
feedback. LIFTR works in concert with existing triage tech-
niques to provide a reliable ranking of results. It is especially
powerful when analyzing expired or deleted storage areas.

• We examine LIFTR on 13 pre-owned Android phones from 6 dif-
ferent manufacturers, using three recovery engines: DEC0DE,
Bulk Extractor, and Strings. All of the phones contained resid-
ual data from the previous owners. The recovery engines return
unranked results, resulting in a ranking score near zero out of
1.0. LIFTR is able to rank results initially with an average rank-
ing score of 0.73 when provided with 5 items of information
from the investigator (e.g., first or last names, phone numbers or
email addresses). Without such hints, LIFTR can leverage infor-
mation about the file system and provide an initial ranking score
of 0.43. With just 5 rounds of investigator feedback, the ranking
score increases to 0.88 and 0.73, respectively. Increasing to 20
questions to the investigator, the ranking further improves to
0.91 and 0.79 for the two approaches.

• An open-source, prototype implementation of LIFTR1.

• We develop techniques to parse and analyze the Yaffs file sys-
tem. We use these techniques to characterize the lifetime and
expiration of data on pre-owned phones; we find that data can
live on the device for weeks or months after it has been logically
deleted. Further, over half of the NAND pages (56%) contained
deleted or expired data. Our results are consistent with previous
work in secure data deletion on flash memory [14,15,22].

2. PROBLEM DEFINITION AND

METHODOLOGY

2.1 Problem Definition
Our goal is to extract user-centric information from mobile phones

that is relevant to an investigation. Previous work on phone foren-
sics [18,21] focused on retrieving all information from a phone’s
data store, regardless of its provenance. While this approach is

1LIFTR’s source code is available at http://forensics.umass.
edu/projects.php.

appropriate for phones with small amounts of storage and few ap-
plications, smart phones store data from innumerable applications,
some of which is significantly more important than others.

Our approach takes the output of these systems as a starting point
(we call them recovery engines), and identifies the content that is
most important to an investigation, according to investigator feed-
back. Specifically, all information is ranked based on a combination
of the investigator’s relevance feedback, the actual content, and stor-
age system locality information. We output a ranked list so that the
investigator need only examine the most-highly ranked information
among the tens of thousands of results returned by the recovery en-
gines. We evaluate LIFTR based on relevance of the results returned
and the amount of feedback required from the investigator.

NAND Flash. Our focus is on phones; as such, LIFTR’s design and
evaluation is in the context of NAND-based flash storage. Unlike
magnetic disk drives, flash does not overwrite memory in place.
Instead, whenever a file is changed, the modified portion is written
to unallocated storage, leaving the expired data in the flash memory.
These expired pages persist for an indefinite period of time — poten-
tially days or weeks under normal usage; see Section 5. Recovery
engines, such as DEC0DE, take advantage of this deletion latency

to recover information that has been logically removed.
NAND file systems fall into two general categories: log-structured

file systems designed to work with the raw storage (e.g., Yaffs)
and block-device file systems that require an intermediate flash
translation layer (FTL). FAT, Ext4, and Samsung’s RFS are three
common block-device file systems found on Android phones.

For block-device file systems, reconstructing files (or even identi-
fying expired data) from the raw bytes requires knowledge of the
FTL — often intractable given the proprietary and diverse nature of
these algorithms. Instead, LIFTR assumes as little as possible about
the system that stores the information, so that it is compatible with
previously unexamined operating systems, file systems, and flash
translation layers. Even so, LIFTR can take advantage of file system
information when it is available.

Information Types. We are particularly interested in recovering
information from the deleted (i.e., expired) pages in memory. These
are the pages that are not accessible through a logical examination
(i.e., via API calls to the phone’s operating system). Because NAND
does not overwrite memory in place, multiple copies of a page with
slightly different content may be spread across the phone. As a
result, even if a phone owner deletes an address book entry that
record may still reside on the phone.

Our system works with whatever information is output by re-
covery engines, as long as the recovered information includes its
location on the storage device. Such information includes address
book entries, call logs, SMS messages, Facebook chats, and data
from smart-phone applications.

2.2 Methodology
Our system recovers data from the physical image of a phone.

Unlike the logical image, the physical image contains the complete
layout of bytes in the phone’s memory, including deleted data, and
is free from any access restrictions that could prevent our system
from using data from certain applications.

We do not address the problem of image extraction, assuming that
the phone’s physical image is already accessible. Also, we assume
that the data in the extracted image is not encrypted; otherwise, the
tested recovery engines would not be able to extract any information.

Pre-processing Data. LIFTR requires that a phone’s data has been
pre-processed in three stages.

82

http://forensics.umass.edu/projects.php
http://forensics.umass.edu/projects.php

Initial

Ranking

Relevance

Feedback

Suspect Information

(Optional)

Information Parsed by

Recovery Engine

Target Page for

Investigator

ranked pages

labeled page

Ranked Pages

output to Investigator

Figure 1: A high-level overview of LIFTR and its two stages: initial
ranking, and relevance feedback. LIFTR takes an unranked list of
information parsed by the recovery engine and returns a ranked list
of the most important NAND pages.

• First, the phone’s physical image is acquired. Depending upon
the model and file system of the phone at hand, hardware acqui-
sition techniques (e.g., Joint Test Action Group (JTAG) connec-
tions), or software acquisition techniques (e.g., nandump or dd)
can be used [7,19,20].

• Second, portions of the acquired image are filtered out when
they are not expected to have user-centric information and are
therefore of no interest to the investigator. These portions include
binaries and resource files from the operating systems and appli-
cations. For example, DEC0DE’s block hash filtering efficiently
removes such data by removing blocks of data that have been
observed on other phones, compared by hash value.

• Third, a recovery engine transforms raw data into information,
including names, phone numbers, email addresses, and text mes-
sages. Examples include DEC0DE [21], DIMSUM [9], Bulk
Extractor [6], and more simply, Strings. We require that the
tool return the corresponding offset in the original phone im-
age and string-based output. E.g., phone numbers should be
normalized to text.

The results are input to LIFTR, which we detail in the next section.
It’s important to note that DEC0DE and Bulk Extractor return

an unranked, unscored list of results. The results are grouped
together by type (e.g., all credit cards and phone numbers), but
grouping is also not practical for thousands or millions of results.
Moreover, being unaware of the underlying file system layout, they
are not designed to treat files like contacts2.db, that are rich in
user data, any differently from others. Consequently, these engines
have no way of prioritizing user-centric results over the rest.

3. DESIGN OF LIFTR
In this section, we provide a general overview of LIFTR and detail

its components. We evaluate the effectiveness of LIFTR in Section 4.
Phone triage tools are often designed to return all data that can

be parsed as legitimate information. This design works well for
feature phones, but not for smart phones. As we show in Section 4,
DEC0DE can return millions of results for smart phones containing
data from real users, but only hundreds or thousands of results are
relevant user data during triage. Sifting through false positives
quickly becomes counterproductive for the investigator.

LIFTR expects that in a triage process, investigators can only
review the top n results. Accordingly, it ranks information returned
by a recovery engine (e.g., DEC0DE or Bulk Extractor) and asks

the investigator to confirm the top-ranked page of results. Based on
the feedback, it re-ranks the list. As more feedback is provided, our
results show that accuracy improves, but of course the amount of
feedback must be kept to a minimum. (We explore the effectiveness
of up to 20 responses from a simulated investigator in our evalua-
tions.) LIFTR combines the feedback with information from the file
and NAND storage-system, and statistics about the content itself to
re-rank the results.

An overview of LIFTR is illustrated in Figure 1. Parsed informa-

tion is input from a recovery engine, and combined with informa-
tion, if any, known to the investigator. Such a priori information
can include a few names or phone numbers. LIFTR’s operation is
comprised of two primary stages.

1. Initial sorting. Prior to asking for any investigator relevance
feedback, LIFTR ranks the input information according to a
relevance metric. At this stage, LIFTR also makes use of any
a priori information provided. In general, better initial sorting
implies that less feedback is needed from the investigator.

2. Relevance feedback. After the initial sorting, the investigator
is asked to label a subset of the pages as true or false positives.
The results are re-ranked after each instance of feedback.

We discuss both of these stages in greater detail below.

Page-level granularity. NAND file systems store files in pages.
Files are stored across one or more pages, that are not necessarily
contiguous in memory. When a file is deleted, the pages remain but
are expired. Before they are reused by another file, NAND pages
are wiped completely. Therefore, all information on a page belongs
to a single file — there is no slack space in a NAND page.

Tools such as DEC0DE and Bulk Extractor search for information
in units that we refer to as fields; e.g., a date, a phone number, or
a credit card number. Each field is returned independent of and
without its page information. However, we find that it is often more
useful to consider information at a page-level granularity. As such,
LIFTR both asks for feedback and presents results at the page level.

First, a page is the unit of write for the file system and, as such,
the page typically belongs to just one file.

Second, pages are small and contain few fields, reducing the
chances that an investigator will overlook a field and result in a false
negative. In our experiments with real phones, DEC0DE returned
on average 24 fields per page, and on average 7 relevant fields per
true positive page; Bulk Extractor returned on average 6 fields per
page, and on average 5 relevant fields per true positive page.

Third, in our experiments, we found that when fields from the
same page are presented together to an investigator, they provide
context that allows the investigator to determine more accurately
their meaning. For example, a date field in isolation may be hard
to evaluate as a true positive or not; but a surrounding set of phone
numbers and strings, or similar dates, provide a context for deciding
the correct feedback.

3.1 Initial Ranking
LIFTR’s algorithm for the initial ranking takes as input a set of

information fields discovered by a recovery engine, each tagged
with its byte offset in the original image. The byte offset is used to
group the fields by NAND page. Our goal is to rank the phone’s
pages based on how likely they are to contain information relevant
to the user and investigation. To do so, LIFTR assigns an initial
quality score to a page p using a normalized weighted sum of a set

83

of features calculated for each field:

quality0(p) =

|Fp|

∑
i=1

m

∑
j=1

w jai j

|Fp|
(1)

where Fp is the set of fields contained on page p; ai is a vector of

m features calculated for the ith field using one of the features we
discuss below, e.g., file system knowledge or a priori knowledge,
and text value; and w is a vector of weights for each of these features,
that sum to 1. LIFTR’s initial ranking of pages is sorted from the
highest to lowest quality scores.

For our evaluation, we consider different combinations of three
field features, based on an investigator’s a priori knowledge, limited
file system information, and the quality of the field text, respectively.
LIFTR can be easily extended to support additional features.

1. Investigator’s a priori knowledge. In some cases, before
forensic analysis begins, an investigator will have basic ex-
ternal knowledge about the case, the phone owner, or an
accomplice; e.g., a first or last name, email address, or phone
number. When we allow its use in our evaluations, LIFTR

sets the value of fields that contain strings supplied by the
investigator with a 1, and 0 otherwise. In our evaluations we
allow only 5 strings as a priori input; see Section 4.

2. File system knowledge. In some cases, an investigator will
have knowledge about the OS and how it is designed to
store information. For example, in Android phones, the
contacts2.db and mmssms.db files are used for storing call
logs, address book records, and SMS messages. If used, this
feature sets the value of fields found in pages belonging to
these two files with a 1, and a 0 otherwise.

3. Text false positives. Smart phones contain a large amount
of text, some of which is user created, but most is detritus
such as cached Web pages, application resources, and high
level code or configuration. We use a set of fixed rules to
filter out these often-seen false positives. First, we assign a
feature value of 0 to text fields that are three characters or
fewer in length. Second, we look for fields that contain HTML
documents and other bits of code. We give a value of 0 to
fields using CamelCase or words commonly found in code
(e.g., SELECT or div). We generated this list ahead of time
using information found on unused, freshly installed Android
phones. For efficiency, we only calculate this feature value
for pages that have a non-zero score for one of the above two
features.

At first blush, it may seem that with the file system feature we
are providing the answer key to LIFTR and no work remains. How-
ever, these two files contain a lot of information that is not easily
recoverable by DEC0DE, Bulk Extractor, or Strings, and much of
what is recovered is not useful (e.g., the metadata and portions of
the schema). It’s important to note that we evaluate LIFTR primarily
using unallocated pages, under the assumption that the phone’s in-
formation has been deleted and reinstalled (for many of our phones,
this was actually the case). The original files are not easily recon-
structed from these pages because not all pages are present, and it
is not always clear if a page belongs to a particular file. We could
have written a specialized SQLite fragment parser for these files,
but our goal is to provide a general technique that makes use of
only the fields output by recovery engines — in turn, those engines
also seek to recover information in a way that is independent of the
file type being recovered, without solving the difficult problem of

generalizable file reconstruction. In short, these engines also seek
to be generalizable to the largest number of scenarios. Section 5
contains more details on our recovery of unallocated pages.

3.2 Relevance Feedback Stage
LIFTR’s initial ranking orders only those pages with a non-zero a

priori or file system score; all other pages will have a zero quality
score after initial ranking. During the relevance feedback stage,
LIFTR refines the initial ranking by using investigator feedback.

At a high-level, our algorithm works as follows. LIFTR presents
the investigator with the top-ranked page and asks him to label all
of the relevant fields on that page. Using the positive labels, LIFTR

then increases the quality score for all semantically related pages
based on how strongly each relates to the current page. Then, LIFTR

updates the page ranking, and it asks for feedback on the top-ranked
page that hasn’t been sent to the investigator. This cycle is repeated
as many times as the investigator wishes. We discuss the details of
each step below.

In general, the more feedback, the better the final ranking; but we
find that the investigator need only label a few pages to bring about
significant improvements in the page order. Further, the number of
fields per page is typically very small with around 24 fields per page
on average for DEC0DE, and only 7 useful fields per relevant page.

The details of the process are as follows.

1. Marking fields. As part of our implementation of LIFTR, we
have written a small interface that makes it easy to quickly label the
fields on a page. An investigator marks entire fields as relevant or
not. LIFTR then breaks fields into tokens by splitting on whitespace
and punctuation. (Phone numbers are not split by hyphens or other
punctuation.) When the investigator marks all fields on a page, we
say that a round has completed.

In sum, for a given page p, Fp is the set of all fields. We let Kp

be the set of all tokens from all fields on page p. We say a token
is relevant if the field it came from was marked as relevant. We let
Tp ⊆ Kp be the subset of all tokens that are relevant on a page p.
To be clear, once a field (and thus its derivative tokens) is marked
relevant on any page, it is relevant for all pages on the phone.

2. Finding semantically related pages. We consider two pages to
be semantically related if the pages share a token that has been pre-
viously marked as relevant and is not in a token blacklist (described
below). The intuition here is that once the investigator marks a
few tokens as relevant (whether names, email addresses, or phone
numbers), we should evaluate other pages that share this content.

In sum, we let R = {r1, . . . ,ri} be the ordered set of pages that
have been marked by the investigator, where ri is the page marked
in the ith round. We let P be the unordered set of pages as-yet-
unmarked that share at least one token with a field from a page in
R , where the field has been marked as relevant.

3. Blacklisting tokens. LIFTR maintains a blacklist of tokens to
exclude when calculating the quality score for the pages. Tokens
are added to the blacklist for one of three reasons: (i) they are found
in a natural language dictionary; (ii) they match a token found on
a set of newly installed and unused Android phones; (iii) they are
present in a field not marked as relevant for a page in R . We let B

be the set of blacklisted tokens.
The negative feedback helps to identify tokens that have no con-

nection to the user and hence are of no interest to the investigator.
This becomes important when a positively marked field string con-
tains irrelevant tokens. For example in the string “I called John Doe
today”, the tokens “John” and “Doe” are highly relevant whereas
“I”, “called", and “today” provide little information. This approach

84

prevents LIFTR from giving undue credit to pages bearing semantic
relations to such tokens.

4. Calculating the new quality score. When a field is marked by
the investigator as relevant on the current page, LIFTR increases
the quality score for the pages in P as follows. For a given p ∈ P ,
each τ ∈ Tp contributes a quality score proportional to its Inverse

Document Frequency (IDF). The IDF of a token is a measure of how
often a token appears in the set of all pages, and it is calculated as:

idf(τ) = log

(

|P ∪R |

|Pτ|

)

,where Pτ = {q|q ∈ P ∪R ,τ ∈ Kq} (2)

Note that Pτ is the set of pages in R and P that contain τ. We use
IDF as a means of reducing the impact of tokens that appear too
frequently throughout the phone. It allows us to have investigators
mark whole fields without distinguishing separate tokens, and yet the
impact of irrelevant tokens present in relevant fields is diminished.
For instance, we find that many frequently occurring irrelevant
tokens, that are not in the blacklist B are specific to the phone at
hand and hence no generalized rules can be hard-coded to avoid
them. However, owing to high frequency, they have a low IDF score
and would therefore have minimal impact on the quality scores.

Once a new page p has been marked by the investigator in round
i (and moved from P to R), all the pages remaining in P are re-
scored. The quality score for a page q∈ P after i rounds of relevance
feedback is the sum of quality score from the previous round and
the IDF scores for each relevant token that q shares with p (ignoring
those tokens found in the blacklist B).

qualityi(q) = qualityi−1(q)+ ∑
τ∈Tq−B

idf(τ) (3)

The value of quality0(q) is the initial ranking score for q, as shown
in Equation 1. Note that quality0(p) = 0 for pages that did not
appear in the bootstrap set. Also, tokens are only evaluated in the
rounds during which they first appear; e.g., if a token “foo” appears
in page r1, then it is ignored if it later appears in r2.

Presentation Order. We refer to the order in which LIFTR presents
pages to the investigator as the presentation order. Currently, we
present the unlabeled pages with the highest current quality score.
While this approach is not necessarily the most efficient for mini-
mizing the number of questions that we need to ask the investigator,
we find it is an effective heuristic.

4. LIFTR EVALUATION
In this section, we evaluate LIFTR’s initial ranking and relevance

feedback stages. Broadly, we focus on three important questions:

1. How effective is LIFTR at ranking relevant pages using differ-
ent recovery engines?

2. How much feedback is required for LIFTR to be effective, and
how does that translate to time required of investigators?

3. What page properties have an effect on relevance feedback?

We discuss each of these questions below.

4.1 Evaluation Methodology
LIFTR’s goal is to help focus an investigator’s limited resources

by identifying pages that are most likely to contain information
relevant to the investigation. It works in concert with existing infer-
ence approaches to seamlessly increase precision and scale. Once
we have identified the important pages, the investigator can then

perform a more thorough examination and perhaps employ more
specialized techniques to extract additional information.

For our experiments we simulated feedback from an investigator,
such that a field on a page is marked relevant if it contains a token
also present in the contacts2.db or the mmssms.db file, e.g., a
name, phone number, or email address.

Inference Engines. We tested the effectiveness of LIFTR to improve
the results of three different triage techniques:

1. DEC0DE [21], a probabilistic parsing approach that supports
many types of data commonly found on mobile phones.

2. Bulk Extractor [2,6], a regular-expression based approach
originally designed for desktop systems.

3. Strings, a common UNIX utility for identifying strings of
printable characters in a file.

In many ways, DEC0DE and Bulk Extractor represent opposite
design philosophies for recovering data. While DEC0DE is designed
to be very flexible and prioritize the recovery of all information at
the expensive of false positives, Bulk Extractor uses strictly defined
regular expressions to limit the amount of irrelevant information,
paying the cost of decreased true positives.
Strings represents a simple baseline approach that makes mini-

mal assumptions about the structure of the underlying data. LIFTR’s
good performance with Strings demonstrates that the effectiveness
of our system does not depend on the underlying engine.

We did not modify Bulk Extractor or Strings before applying
them to smart phones, and made only minor changes to the DE-
C0DE workflow. DEC0DE typically groups the inferred fields
into records — e.g., nearby text and phone number fields might
be grouped together as an address book entry — and returns a
list of these records to the investigator. We found it necessary
to forgo the record step and only consider the field-level results.
Records, as they are defined by DEC0DE, are centered around phone
numbers existing in close proximity to names and other identifying
information. However, since Android uses relational databases for
storing data, the name for an address book entry will not necessarily
appear in close proximity to the phone number in memory.

With careful modification, it is likely that DEC0DE and Bulk Ex-
tractor will perform significantly better than what we observed. For
example, we could add additional regular expressions to Bulk Ex-
tractor that are specifically targeted toward Android data. However,
our intention was not to measure the performance of the inference
techniques, but instead to evaluate the effectiveness of LIFTR and
demonstrate how it can benefit each of the recovery engines.

Phones. A partnering research group provided us with both the
logical and physical images of 13 previously owned phones2. These
13 Android phones, listed in Figure 2, were from 6 different man-
ufacturers with users that lived in Canada, Hungary, India, Israel,
Singapore, Serbia and the US. Each of these phones contained vary-
ing amounts of residual data from their previous users.

Before applying the recovery engines, we pre-filtered each physi-
cal image, to (i) reduce the amount of data passed to the inference
tools, and (ii) when it could be identified, limit our analysis to the
user data partition in the image. For 8 of the 13 phone images,
we applied a filtering technique based on the Yaffs file system; we
describe this approach in more detail in Section 5. For the remaining
5 phones phones, we employed the block hashing filtering approach
proposed by Walls et al. [21].

2We received IRB approval for this process. Phone images provided
by Simson Garfinkel at the Naval Postgraduate School.

85

DEC0DE Bulk Extractor Strings

Pages True Fields True Pages True Fields True Pages True Fields True

Pages Fields Pages Fields Pages Fields

HTC Desire HD 228,860 1,834 6,247,115 12,275 518 55 5,233 216 189,182 1,629 6,509,666 13,875

Samsung Galaxy Y 175,873 600 4,594,060 2,954 263 0 694 0 139,109 1,526 3,747,699 26,492

Motorola XT701 144,618 207 3,049,543 869 118 0 650 0 120,923 207 2,762,831 984

HTC Evo 4g 78,680 3,178 1,853,638 22,850 2,689 323 21,806 1,250 68,216 2,761 1,774,627 18,243

Samsung Galaxy Y Duos 60,422 3,612 1,530,630 21,399 2,150 1,715 18,550 14,235 51,324 4,093 1,281,450 35,334

HTC Wildfire 55,759 137 1,019,033 837 118 36 1,031 321 46,360 115 1,176,778 872

Samsung Galaxy Mini 53,456 1,390 1,329,715 4,031 1,329 275 5,599 1,139 40,288 434 1,020,422 2,134

Sony Xperia x10 30,063 16 855,464 154 20 4 57 22 22,447 22 958,791 159

Dell XCD35 20,494 221 594,469 1,621 90 24 528 49 16,191 222 539,018 2,268

Dell XCD28 17,932 118 495,099 841 27 6 190 20 13,189 78 433,917 734

HTC Legend 10,238 19 198,873 121 26 0 28 0 7,721 14 194,448 108

Huawei Ideos 8,829 667 170,143 6,799 81 9 1,106 15 7,777 683 202,654 7,022

Huawei 8500 6,305 3 116,524 41 12 0 28 0 5,764 3 135,157 50

Figure 2: Page and field statistics for the three recovery engines. On average, less than 2% of the results returned by the recovery engines are
relevant; for more than half of the phones this percentage is below 0.5%.

Figure 2 shows the number of pages returned by each of the tested
inference techniques. For DEC0DE and Strings, the number of
returned results is typically orders of magnitude greater than the
actual number of relevant results. The percentage is less drastic for
Bulk Extractor, but the number of fields returned by the tool is still
often in the hundreds or thousands.

Because we did not have direct access to the phones, our eval-
uations were limited to the provided images, i.e., we could not
manually manipulate the phones. However, this limitation mimics
the restrictions placed on real world investigations, wherein the
investigator must take great care not to modify the phone (beyond
the extent necessary to extract the image).

Ground Truth. We collected ground truth from the contacts and
SMS databases taken from the logical image of each of the phones.
That is, we used tokens collected from the allocated versions of the
SQLite databases contacts2.db and mmssms.db, respectively.

We considered a field provided by a recovery engine to be relevant

if it contained a token — name, phone number, email address —
found in one of the two ground truth databases. For example, if
the allocated version of the contacts2.db file included the number
212-555-0123, we considered any field from any page containing
this number as relevant. Consequently, relevant fields are not limited
to the pages in contacts or SMS databases. We described the field
tokenization process previously in Section 3.2.

LIFTR presents results to the investigator at a page-level granular-
ity. We define a relevant page as any page that contains at least one
relevant field — a field with a token pertinent to the investigation.
For our evaluation, field types were either phone numbers, names or
email addresses.

Limiting our ground truth to pages that have tokens belonging
to the SMS and contacts databases gives us a lower bound on the
amount of data present on the target phone. While there are other
potential data sources we could draw our ground truth from (e.g.,
the geolocation database), grabbing this information would require
modification to DEC0DE and Bulk Extractor. Further, our goal is to
test the effectiveness of our feedback approach, and not that of the
recovery engines. In other words, DEC0DE may not correctly infer
all of the relevant fields on the phone. When evaluating our ranking,
we only consider the relevant fields that each recovery engine was
able to identify.

Initial Ranking Features. In our experiments, we consider two
combinations of the initial-ranking features from Section 3.1: (i)

file system knowledge paired with text quality and (ii) a priori

information paired with text quality. For the a priori method we use
all of the phones from our set, 13 in total. For the file system feature,

we limit the evaluation to the 8 phones with a parsable Yaffs user
data partition. We used a feature weight of 0.6 for file system and a

priori, and 0.4 for text quality.
Our set includes 9 phones with the Yaffs file system. We wrote a

special Yaffs parser to identify expired pages and label each page
with its likely filename; we describe this process in Section 5. One
of nine Yaffs phones could not be parsed properly by our techniques.
This is because we were unable to separate the user data partition
from the rest of the physical image. The other four phones used
either Ext4 or RFS (a variant of FAT) and their physical images were
acquired below a flash translation layer, making it impossible for us
to label the pages with their suspected file names without knowledge
of the FTL’s mapping algorithms. In the non-Yaffs phones, LIFTR

was not aware of the file to which a page belonged.
For the a priori setting, we select five relevant tokens randomly

from the pool of all relevant/user related tokens like a name, phone
number or an email address. The initial sorting score of pages to
which these tokens belong would be increased, causing them to
rise above the rest. The performance of LIFTR using the a priori

approach is averaged over 30 trials for each of the 13 phones. In the
setting where we use file system knowledge, the initial sorting scores
of pages associated with user-content rich files like contacts and
SMS are stepped-up instead, causing such pages to improve their
ranks. Leveraging file system information, being a deterministic
approach, needs to be run only once for each phone.

We tried a combination of all three ranking features, but found that
it does not provide substantial improvement over the combination
of a priori and text quality. We suspect this lack of improvement is
due to our evaluation methodology wherein all simulated a priori

knowledge was on the phone. In a real-world scenario, it is possible
that only a subset of the investigator’s a priori knowledge appears
in the recovered fields.

Filtering. We filtered the parsable Yaffs images to only include the
expired pages; see Section 5 for details. For the other phones, we
used block hash filtering, which cannot distinguish between current
and expired pages.

Normalized Discounted Cumulative Gain. We use normalized

discounted cumulative gain (NDCG) [8] to measure the effective-
ness of LIFTR’s sorting. An NDCG score of 1 means an ideal
ranking, that is, all of the top k pages are relevant. An NDCG score
of 0 means the worst possible ranking, where none of the top k pages
are relevant. Here, k is a cutoff rank, which depends on the expected
number of relevant results and on how many top-ranked results
would the user be willing to sift through. More formally, the dis-
counted cumulative gain at rank i is More formally, the discounted

86

cumulative gain at rank i is calculated as follows.

dcg(i) = v1 +
i

∑
j=2

(
v j

log2 j
) (4)

where v j = 1 if the page at rank j is relevant, and 0 otherwise. We
obtain the normalized DCG score by dividing the DCG score by the
maximum possible score for some cutoff k.

ndcg(k) =
dcg(k)

1+
k

∑
j=2

(1/ log2 j)

(5)

Order matters for NDCG. For example, given a ranked list A, where
only the top half is relevant, and another ranked list B, where only
the bottom half is relevant, then ndcg(A) > ndcg(B), assuming A

and B are the same length.

4.2 Impact of Initial Sorting and Relevance
Feedback

Figures 3(a), 3(b), and 3(c) show the NDCG results for LIFTR us-
ing DEC0DE, Strings, and Bulk Extractor, respectively, averaged
over all phones.

Initial Scoring. DEC0DE, Bulk Extractor, and Strings all pro-
duce unsorted results: their NDCG scores are near to zero. LIFTR’s
initial sorting is significantly better. Using 5 tokens of a priori infor-
mation provides a significant benefit for LIFTR’s initial sorting stage,
resulting in an average NDCG of 0.73 across all three recovery en-
gines for k = 50. The NDCG for initial sorting is denoted by the
“Initial” tick mark on the far left side of x-axes in Figures 3(a), 3(c),
and 3(b). Initial sorting with file system information gives an aver-
age NDCG of 0.43, for k = 50, across the three recovery engines.
This discrepancy is due in part to the number of pages that belong
to the contacts and SMS databases that are not actually relevant. For
example, many of these pages contain schema related information
and other database metadata. Giving a higher initial score to con-
tacts and SMS databases has the effect of also wrongly benefiting
such irrelevant pages belonging to these files.

Relevance Feedback. The experiments demonstrate that the rel-
evance feedback stage results in a significant improvement in the
NDCG scores with a small amount of feedback. For example, after
labeling just 5 pages, the score for the a priori scenario rises from
an initial NDCG value of 0.73 to 0.88, for k = 50; and from 0.48 to
0.71, for k = 1000.

The graphs for DEC0DE and Strings also depict the differences
in increases of the NDCG score when given more feedback, for
different cutoff ranks. There is a steeper increase for k = 1000 as
compared to k = 20 or k = 50. This shows that the initial ranking
algorithm is able to fill up the top few ranks with relevant pages (high
NDCG at initial for k = 20), however the initial sorting incorrectly
ranks a significant number of irrelevant pages over relevant pages
at ranks above 50. We see that the relevance feedback quickly
corrects these mistakes (steep increase in NDCG for k = 1000). This
demonstrates the importance of relevance feedback in LIFTR. At the
same time, it also establishes the need for having initial ranking for
bootstrapping the feedback stage. A few relevant pages in the early
ranks greatly increases the pace at which LIFTR discovers other
good pages, and helps LIFTR ignore the large pool of bad ones.

Variation. Each line in Figures 3(a), 3(c), and 3(b) is an average
of all phones for the given experiment. The average of all NDCG
scores allows us to aggregate many experiments into these three
figures. There is variation among phones that is hidden by the

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

Decode, a priori Decode, FS labeling

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
iti
al 2 4 6 8 10 12 14 16 18 20

In
iti
al 2 4 6 8 10 12 14 16 18 20

Number of Pages Labeled

A
v
g
.
N

o
rm

.
D

is
c
o
u
n
te

d
 C

u
m

u
la

ti
ve

 G
a
in

cutoff

●

●

●

20

50

1000

(a) DEC0DE

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●●

●
●
●

●
●●

●
●●

●
●●

●
●●

●
●
● ●

●
● ●

●
● ●

●
● ●

●
● ●

●
● ●

●
● ●

●
● ●

●
● ●

●●
●
●●

●
●●

●
●

●

Strings, a priori Strings, FS labeling

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
iti
al 2 4 6 8 10 12 14 16 18 20

In
iti
al 2 4 6 8 10 12 14 16 18 20

Number of Pages Labeled

A
v
g
.
N

o
rm

.
D

is
c
o
u
n
te

d
 C

u
m

u
la

ti
ve

 G
a
in

cutoff

●

●

●

20

50

1000

(b) Strings

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bulk Extractor, a priori Bulk Extractor, FS labeling

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
iti
al 2 4 6 8 10 12 14 16 18 20

In
iti
al 2 4 6 8 10 12 14 16 18 20

Number of Pages Labeled

A
v
g
.
N

o
rm

.
D

is
c
o
u
n
te

d
 C

u
m

u
la

ti
ve

 G
a
in

cutoff

●

●

●

20

50

1000

(c) Bulk Extractor

Figure 3: The average NDCG score for DEC0DE, Strings and
Bulk Extractor. The high initial score for k = 20 shows that LIFTR’s
a priori and file system ranking effectively places relevant pages
early in the list. These top pages bootstrap the feedback process,
enabling LIFTR to discover the large number of remaining pages
— evidenced by the steady NDCG increase for k = 1000. LIFTR’s
results are consistent for all three recovery engines.

average NDCG, but it is not representative of the variation within
each phone. Figure 4 shows the per-phone NDCG values for DE-
C0DE using the a priori approach, for a cutoff of k = 1000 (i.e.,
the blue line in the left plot of Figures 3(a)). Error bars show 95%
confidence intervals over 30 trials, each using a randomly selected
set of 5 tokens. For ten of the phones, relevance feedback always
improves the NDCG. For three phones, the relevance feedback
approach provides no advantage.

87

●●
●●●●●●●●●●●●●●●●●●●

htc legend

0.0

0.2

0.4

0.6

0.8

1.0

●

●
●
●●

●●●●
●●●●●●●●●●●●

●

●●
●●

●●
●●●●●●●

●●●●●●●

●
●
●●

●
●
●
●
●●

●
●●●●●●●●●●

●
●
●
●●●●●●●●●●

●●●●
●
●●●

●

●
●

●

●●
●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●●

●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●

●

●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●

●●
●

●●●●

●

●
●

●
●
●
●

●
●●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●

dell xcd28 dell xcd35 htc desirehd htc evo4g

htc wildfire huawei 8500 huawei ideos motorola xt701

samsung galaxymini samsung galaxyy samsung galaxyyduos sony experiax10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

In
itia

l

4 8 1
2

1
6

2
0

2
0

In
itia

l

4 8 1
2

1
6

2
0

2
0

In
itia

l

4 8 1
2

1
6

2
0

2
0

In
itia

l

4 8 1
2

1
6

2
0

2
0

Number of Pages Labeled

A
v
g

.
N

o
rm

.
D

is
c
o

u
n

te
d

 C
u

m
u

la
ti
ve

 G
a

in

Figure 4: Per-phone average NDCG results for DEC0DE using the
a priori approach, for a cutoff of k = 1000. Error bars show 95%
c.i. across 30 trials per point. For most of the phones, relevance
feedback consistently improves the NDCG score.

Discussion. The average NDCG score for all approaches and set-
tings increases with feedback but does not reach its maximum value
of 1. There are two possible reasons for this limitation. First, there
are certain relevant pages on the phone that are not semantically
related to other relevant pages and so no amount of feedback can
guide LIFTR in identifying such pages that are sitting by themselves.
Second, the NDCG score for a cutoff of k is not only affected by the
number of relevant results among the top k, but also the positions at
which they appear. Even if LIFTR is able to rank the relevant pages
among the top k positions, unless all of those pages appear before
all irrelevant pages, the score will be less than unity.

It is also important to note that the pages recovered during rele-
vance feedback are not limited to those belonging to contacts and
SMS databases. They could include pages associated with other files
that have relevant tokens. For instance, some phones have user data
in the SQLite Write Ahead Log file, which is like a rollback journal
used by SQLite for atomic commits and transaction rollbacks. This
shows that simply extracting contacts and SMS database files would
not yield all the relevant data on the phone.

It is also interesting to note that the NDCG plot for Bulk Extractor
is not as smooth as DEC0DE or Strings, due to the fact that only a
few phones have have more than 50 pages and fewer have more than
a 1000 pages among the inference results after using Bulk Extractor.
Hence, the NDCG values are averaged across fewer phones.

4.3 Measuring Investigator Work
The intuition behind LIFTR’s feedback approach is that an inves-

tigator can perform a small amount of manual analysis to greatly

●●●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●●

●

●

●

●
●

●

●●
●
●

●

●●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●●●

●

●
●●
●

●

●

●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●
●
●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●
●
●

●

●●

●●

●

●

●●

●

●●

●

●●●●●

●

●●●●●

●

●

●●

● ●

●

●

●

●

●●

● ●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●●

●●●●●●●

●

●●

●

●●●●●

●

●●●●●

●

●●

●

●●●

●●●

●

●

●●

●

●●

●

●●●●●●

●

●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●
●

●

●

●●

●
●

●

●

●

●

●●●
●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●
●

●

●●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●

●●●●
●
●

●

●

●

●

●

●

●
●

●

●
●
●●●

●

●
●●
●

●

●

●

●●

●●

0%

25%

50%

75%

100%

D
el
l X

C
D
28

D
el
l X

C
D
35

H
TC

 D
es

ire
 H

D

H
TC

 E
vo

 4
g

H
TC

 L
eg

en
d

H
TC

 W
ild

fir
e

H
ua

w
ei
 8

50
0

H
ua

w
ei
 Id

eo
s

M
ot

or
ol
a

XT70
1

Sam
su

ng
 G

al
ax

y
M

in
i

Sam
su

ng
 G

al
ax

y
Y

Sam
su

ng
 G

al
ax

y
Y D

uo
s

Son
y
Xpe

ria
 x
10

R
e

le
va

n
t

fi
e

ld
s
 p

e
r

p
a

g
e

 (
g

iv
e

n
 a

t
le

a
s
t

o
n

e
)

Figure 5: The percentage of relevant fields averaged across all
relevant pages. The majority of fields returned by the recovery
engines — even for relevant pages — are false positives.

improve the overall quality of the returned results.
For our evaluation, we measure investigator work in terms of the

number of pages that they must manually label. Because a single
page may require multiple labels, we differentiate between (i) the
total number of pages that the investigator labels and (ii) the number
of fields that the investigator must label. Recall from Section 3.2
that an investigator need only label the positive fields, as LIFTR will
default to marking everything it has shown the investigator as a false
positive. On average, this approach leads to 7 labels per relevant
page. If we assume that it takes an investigator 5 seconds marking
a label, then it would take him around 35 seconds per page, and
around 11 minutes to complete 20 page. As our results for the three
recovery engines suggest, 20 pages is sufficient for most phones to
achieve an NDCG of at least 0.8.

We examined another approach where the investigator marked
whole pages as relevant or not, rather than the individual fields on
each page. This alternate approach did not perform as well. Figure 5
shows why: among pages with at least one relevant field, typically
less than half of the fields on the page are relevant.

4.4 Strongly Related Pages
Our technique is most effective when the investigator provides

positive labels to pages that are semantically well connected to other
pages, owing to the co-occurrence of relevant tokens among them.

In order for relevance feedback to be effective within i pages of
feedback, the initial sorting must include a relevant page in the top
i result pages. We find that it is more effective to bring up true
positive pages than it is to penalize false positive ones. This is
largely because irrelevant pages greatly outnumber relevant ones;
20 pages of feedback are not sufficient for identifying most of the
irrelevant pages or tokens.

5. RESIDUAL DATA IN ANDROID
In this section, we detail our techniques for parsing and analyzing

the Yaffs file system. We use these techniques with LIFTR to more
effectively filter the physical images, and to provide the file labels
for initial sorting.

We also show that significant amounts of data, including user
information, persists in the expired segments of the phone’s memory
for periods as long as weeks or months. Further, this expired data
makes up more than half of the NAND pages for some phones.

88

Since this data cannot typically be recovered by parsers that aim
at reconstructing the file system, file system agnostic inference
techniques used by recovery engines like DEC0DE and Bulk Ex-
tractor are a potential solution to the problem. The sheer amount of
irrelevant results returned by these engines, however, highlights the
importance of using LIFTR for quickly locating information with
evidentiary utility, from these results.

NAND flash does not overwrite data in place. Instead, when
an object is modified, the data is written to a new page, leaving
the expired chunk in storage. These expired pages persist for an
indefinite period of time. This residual data offers interesting oppor-
tunities for forensic triage, as the old pages contain deleted data and
can potentially be used to track the changes over time. Our results
are consistent with previous work in secure data deletion on flash
memory [14,15,22].

5.1 Yaffs Overview
Yaffs, common on Android phones prior to Gingerbread, is a

log-structured file system designed to work with NAND storage.
The file system treats everything as an object or piece of an object.
Each Yaffs object is stored as a sequence of chunks. Typically, a
chunk is equivalent to a NAND page. Yaffs uses header chunks,
to store object metadata such as the object type, timestamps, and
permissions, and data chunks to store the actual bytes of a file. Non-
file objects such as directories and hard-links, are made up of just
a single (header) chunk. In Yaffs, chunks are the unit of write and
blocks are the unit of erasure. Blocks are made up of contiguous
chunks in memory, often 64 chunks to a block.

Chunks may be in one of three states: erased, expired, or current.
A chunk is considered erased if it resides on an erased block, that
is, the block is devoid of any data and contains all 0xFF values.
In contrast, expired chunks contain once-valid data that has been
replaced by a more recent chunk. These chunks either belong to
deleted objects or are old pieces of current objects. Both erased and
expired chunks are ignored by the file system.

Finally, current chunks contain the most recent version of each
object chunk. Yaffs keeps track of all of the current chunks and uses
them to reconstruct all objects in the file system.

When a file is modified, one or more chunks transition from the
current state to expired. Eventually, through a garbage collection
process, Yaffs will reclaim storage space by erasing an entire block
of expired chunks. Recall that the unit of erasure in NAND is a
block. However, it is common for expired and current chunks to
reside on the same block.

Upon phone startup, Yaffs scans through all of the chunks to
reconstruct the file system state. In order to determine which chunks
are current and which are expired, Yaffs uses the out-of-bounds

area (OOB) — a small region of memory adjacent to each page
— to store file system metadata. This metadata includes the block

sequence number which is assigned when a block is picked for
writing. Because Yaffs always fills the current block before moving
to the next block (in absence of power loss or shutdown), the block
sequence number, and the order of chunks within the block, repre-
sents a temporal ordering: the higher the sequence number, the more
recently the block was written. Note that blocks with consecutive
sequence numbers may not be physically adjacent in memory.

5.2 Breakdown of Chunk Composition
A significant portion of the phones consists of residual data, with

56% on average for the set of pre-owned phones. Figure 6 shows
the fraction of different chunk types for a set of Android phones. As
we discussed above, Yaffs chunks are either headers or data and are
always in one of three states: erased, expired, or current. This gives

Pre−Owned Unused

0.00

0.25

0.50

0.75

1.00

D
el
l X

C
D
28

D
el
l X

C
D
35

H
TC

 E
vo

 4
g

H
TC

 L
eg

en
d

H
TC

 W
ild

fir
e

H
ua

w
ei
 8

50
0

H
ua

w
ei
 Id

eo
s

Son
y
Xpe

ria
 x
10

D
ro

id
 E

ris

H
TC

 A
ria

H
TC

 G
1

H
TC

 H
er

o

H
TC

 M
yT

ou
ch

 3
g

LG
 O

pt
im

us
 S

M
ot

or
ol
a

D
ro

id

N
ex

us
 O

ne

Son
y
Xpe

ria
 x
10

F
ra

c
ti
o

n
 o

f
C

h
u

n
k
s

Category
Erased

Expired data

Expired header

Recent data

Recent header

Figure 6: Fraction of each chunk type for the user data partition.
On the pre-owned phones, over half (56%) of all storage belongs to
expired memory chunks.

us the 5 chunk categories shown in Figure 6.
The phone set includes 8 of the pre-owned phones from Section 4

(those with a parseable Yaffs user data partition), in addition to 9
unused phones loaded with synthetic data3. We limit our analysis to
the user data partition of each phone.

On average across both the unused and pre-owned phones, roughly
26% of the chunks are current, with 27% erased and the remaining
47% expired data. Pre-owned phones have a greater fraction of
current chunks than the unused phones: an average of 31% versus
20%, respectively. And pre-owned phones have fewer erased chunks
than unused phones: an average of 12% versus 43%, respectively.
The difference in erased chunks is due to the garbage collection
process. Garbage collection is expensive and typically only erases
blocks as needed.

By definition, each object may only have one current header
chunk and, if it is a file object, one or more current data chunks. On
average across the used phones, current headers make up only 5%
of the chunks whereas current data chunks make up roughly 26%.
Interestingly, the ratio of header to data chunks is significantly higher
in the expired data. For the pre-owned phones, expired headers make
up 30% and expired data chunks make up 27%. Anytime an object
is modified, whether it be the object’s metadata or actual contents,
Yaffs will write a new header chunk. In this way, expired headers
track changes to an object over time.

Much of the storage space is dedicated to SQLite databases and
associated files. The majority of the expired chunks belong to
deleted objects, typically SQLite temporary files such as the journal
files used for rollbacks.

5.3 Filtering Images Using Yaffs
Recovery engines such as Bulk Extractor or DEC0DE are de-

signed to be able to recover information from deleted (i.e., expired)
portions of an image. With information from Yaffs metadata, we
can more effectively filter the phone image to focus on the expired
chunks. We implemented a parser to identify the unique set of ex-
pired data chunks, and for the 8 pre-owned phones, we were able to
reduce the size of the images by an average of 76% for our experi-
ments in Section 4. Note that expired header chunks contain only

3We obtained the 9 phones with synthetic data from Via Forensics:
https://viaforensics.com/.

89

https://viaforensics.com/

0

400

800

1,200

0 20 40 60

Age of Block (Days)

N
u

m
b

e
r

o
f

B
lo

c
k
s

Dell XCD28

Dell XCD35

HTC Evo 4g

HTC Legend

HTC Wildfire

Huawei 8500

Huawei Ideos

Sony Experia x10

Figure 7: The age of blocks, in days, for the user data partition of
pre-owned phones. Blocks remain in memory for weeks or months
after originally written, with half older than 14 days and a quarter
older than 34 days.

outdated metadata, rather than the type of information the inference
engines and investigators target. Because the header data and allo-
cated chunks are interleaved with expired data, a technique that is
blind to the file system, such as block hash filtering [21] would not
be able single out the expired chunks.

5.4 Block Churn
Our analysis of the 8 pre-owned phones showed that blocks re-

main in memory for weeks or months after originally written. Any
expired chunks in those blocks are accessible via DEC0DE or other
recovery engines. We describe our findings and the process for
estimating block age below.

The block sequence numbers provide a temporal ordering of
blocks in the file system; the block with the highest sequence number
was written most recently while lowest number block is the oldest.
However, the sequence numbers do not directly tell us the exact
write time of a block.

More precisely, a block’s write period is a time range between
when the first and last chunks were written to the block. The block
write period is useful for (i) providing a bound on when expired
chunks were valid and (ii) as a means for estimating the rate at
which blocks are written.

Header chunks contain object timestamps. If a block contains a
header, we can use that header to help estimate the block’s write
period. If a block does not contain a header, we can use the time
estimates for adjacent blocks (by sequence number).

At a high level, we employ the following algorithm to estimate
the write period for each block. First, for each block we record the
object timestamps stored in any header chunks that are present on
the block. Header chunks are written anytime an object is created or
modified, and contain three timestamps: atime, mtime, and ctime.
Unlike the Unix equivalents, atime does store last access time by
default. Typically, atime stores the creation time of the object. The
write time for the header chunk is then the greater of either the
ctime or mtime, ignoring the effects of caching which appear to
be negligible in practice. The block’s write time is bounded by the
oldest and most recent header write times.

When a block does not contain any header chunks, we have to es-
timate the write period using adjacent blocks. For example, consider

blocks b1, b2, b3 with sequence numbers 1, 2, and 3 respectively.
Assuming, we already have write period estimates for b1 and b3

(calculated using the header chunks). The sequence numbers give
us the write order for the three blocks. In other words, b2 must have
been written after b1 but before b3. Therefore, the write period of
b2 must be between the last write of b1 and the first write of b3.

In practice, we observe that some header chunks used seemingly
inconsistent timestamps, e.g., some headers stored a modification
time that was before the object’s creation time. This is due in part to
garbage collection, as we discuss further below. To avoid this issue,
we only use timestamps from newly created objects. Focusing solely
on new objects does not represent a limitation as phones frequently
create new and temporary files. We can find newly created objects
by looking for expired headers such that the header is the oldest
chunk found for an object and the number of bytes listed in the OOB
field is zero.

Figure 7 shows the block ages for the pre-owned phones. We
calculated the block age relative to the age of the most recent block
of each phone. For the HTC Evo 4g 37% of the blocks were over
60 days old. Across all phones, half of all blocks were older than 14
days, and a quarter were older than 34 days.

Garbage Collection. Yaffs periodically copies current chunks to
new blocks, freeing the original block for deletion. These chunks
are copied exactly, so any moved header chunks will retain their old
timestamps. Consequently, chunks moved due to garbage collection
may appear to be newer than they actually are. For example, imagine
the most extreme case in which a data chunk is written early in the
phone’s life, but always remains current because the file it belongs to
never changes. Over time that chunk will be moved to new blocks as
the result of garbage collection with each subsequent block having a
higher sequence number. In other words, there may be a significant
difference between when a chunk was written to a given block and
when the chunk was originally written.

Because blocks sequence numbers are always incremented, we
can estimate the rate of block deletion and garbage collection by
looking at the missing sequence numbers in the image.

5.5 Inferring Yaffs Parameters
Before we can analyze the Yaff image, we have to infer the

important Yaffs parameters that may be different for each phone.
For each phone image we need to infer the block size, chunk size,
OOB size, and OOB tag offset. Knowing the OOB tag offset enables
us to parse the Yaffs metadata store in the OOB, e.g., the block
sequence number and object identifier.

This OOB offset is not directly controlled by Yaffs. We can
quickly determine this offset by comparing the OOBs for different
headers of the same file object. For the same object, the object
identifier should remain consistent across different header chunks.
This approach relies on file objects that are unlikely to have been
deleted, e.g., the contacts database.

To estimate the Yaffs parameters, we scan the image for header
chunks belonging to a file known to be on the image. For example,
the contacts2.db file is present on most Android phones. We
repeat the scan assuming a variety of different parameter values.
The most likely parameters are those that produce the most valid file
headers. In practice, all of the phones we examined used a chunk
size of 2048 bytes, an OOB of 64 bytes, and a block size of 64
pages; however, we saw at least three different OOB offset values.

6. RELATED WORK
In addition to DEC0DE and Bulk Extractor, LIFTR is related to

prior work in acquiring physical images from mobile phones [13,19,

90

20] and Android file system analysis [3,17].
Park et al. [12] propose a technique for clustering and recovering

fragmented SQLite records of the same file residing in expired
pages, without parsing or recreating the underlying file system.
LIFTR could be used to augment their technique.

Beebe et al. [1] implement an unsupervised learning algorithm for
clustering results from simple text search queries on raw data, using
self-organizing neural networks. In contrast, LIFTR is a supervised
approach, and would complement their mechanisms.

Foster [4] propose a file system independent technique, sector
hashing, for identifying if a target file was ever present on a storage
device. The work does not target user-generated information.

Marturana et al. [10,11] use machine learning models to determine
if copyright-infringing data or child abuse materials are present on a
mobile device. Such models are more difficult to train in a general
setting, where the investigator is interested in user-specific details
which typically lack distinctive features.

7. CONCLUSION
We proposed the use of relevance feedback to quickly pinpoint

information relevant to an investigation. Our system, LIFTR, ad-
dresses a major issue limiting current forensic triage techniques:
only a small fraction of the information returned by recovery en-
gines is relevant to an investigation.

When applied to smart phones, the recovery engines returned
hundreds of thousands of results, most of which were irrelevant.
LIFTR overcomes this limitation by finding those pages that are
most likely to contain useful information, getting feedback from the
investigator, and using that information to rank the results. Further,
we show how a small amount of background information about a
suspect can greatly improve LIFTR’s performance.

Our evaluation was performed using Android phones from a
variety of makes and models. We tested LIFTR with three different
recovery engines, each differing significantly from the others in its
inference approach. Our results demonstrate that feedback on as few
20 NAND pages is more than sufficient to identify the top 100 most
relevant pages out of the hundreds of thousands of false positives
returned by the recovery engine.

Acknowledgements. We thank Simson Garfinkel for making the
corpus of phones available to researchers. This work was supported
in part by the Office of Naval Research (N00244-12-1-0057).

8. REFERENCES

[1] N. L. Beebe, J. G. Clark, G. B. Dietrich, M. S. Ko, and D. Ko.
Post-retrieval search hit clustering to improve information
retrieval effectiveness: Two digital forensics case studies.
Decision Support Systems, 51(4):732–744, 2011.

[2] R. Beverly, S. Garfinkel, and G. Cardwell. Forensic Carving
of Network Packets and Associated Data Structures. In Proc.

DFRWS Digital Forensics Research Conference, pages 78–89,
Aug. 2011.

[3] K. D. Fairbanks. An analysis of Ext4 for digital forensics. In
Proc. DFRWS Digital Forensics Research Conference, pages
118–130, August 2012.

[4] K. Foster. Using Distinct Sectors in Media Sampling and Full
Media Analysis to Detect Presence of Documents from a
Corpus. Master’s thesis, Naval Postgraduate School,
Monterey, California, September 2012.

[5] S. L. Garfinkel. Carving contiguous and fragmented files with
fast object validation. In Proc. Digital Forensic Research

Workshop (DFRWS), pages 2–12, August 2007.

[6] S. L. Garfinkel. Digital media triage with bulk data analysis
and bulk_extractor. Computers & Security, 32:56–72, 2013.

[7] A. Hoog. Android forensics: investigation, analysis and

mobile security for Google Android. Elsevier Science, 2011.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on Information

Systems (TOIS), 20(4):422–446, 2002.

[9] Z. Lin, J. Rhee, C. Wu, X. Zhang, and D. Xu. DIMSUM:
Discovering Semantic Data of Interest from Un-mappable
Memory with Confidence. In Proc. ISOC Network and

Distributed System Security Symposium, February 2012.

[10] F. Marturana, G. Me, R. Berte, and S. Tacconi. A Quantitative
Approach to Triaging in Mobile Forensics. In Proc. IEEE

International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), pages 582–588,
July 2011.

[11] F. Marturana and S. Tacconi. A machine learning-based triage
methodology for automated categorization of digital media.
Digital Investigation, 10(2):193–204, 2013.

[12] J. Park, H. Chung, and S. Lee. Forensic analysis techniques
for fragmented flash memory pages in smartphones. Digital

Investigation, 9(2):109–118, 2012.

[13] D. Quick and M. Alzaabi. Forensic analysis of the android file
system yaffs2. In Proc. Australian Digital Forensics

Conference, 2011.

[14] J. Reardon, S. Capkun, and D. Basin. Data node encrypted file
system: Efficient secure deletion of flash memory. In Proc.

USENIX Security Symposium, August 2012.

[15] J. Reardon, C. Marforio, S. Capkun, and D. Basin. User-level
Secure Deletion on Log-structured File Systems. In Proc.

ACM Symposium on Information, Computer and

Communications Security (ASIACCS), pages 63–64, May
2012.

[16] G. G. Richard III and V. Roussev. Scalpel: A Frugal, High
Performance File Carver. In Proc. DFRWS Digital Forensics

Research Conference, August 2005.

[17] M. Spreitzenbarth, S. Schmitt, and C. Zimmermann. Reverse
engineering of the android file system (yaffs2). Technical
Report CS-2011-06, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Department Informatik, June
2011.

[18] J. Tuttle, R. J. Walls, E. Learned-Miller, and B. N. Levine.
Reverse Engineering for Mobile Systems Forensics with Ares.
In Proc. ACM Workshop on Insider Threats, October 2010.

[19] T. Vidas, C. Zhang, and N. Christin. Toward a general
collection methodology for android devices. In Proc. DFRWS

Digital Forensics Research Conference, pages 14–24, August
2011.

[20] D. Votipka, T. Vidas, and N. Christin. Passe-Partout: A
General Collection Methodology for Android Devices. IEEE

Transactions on Information Forensics and Security,
8(12):1937–1946, Dec 2013.

[21] R. J. Walls, E. Learned-Miller, and B. N. Levine. Forensic
Triage for Mobile Phones with DEC0DE. In Proc. USENIX

Security Symposium, August 2011.

[22] M. Wei, L. M. Grupp, F. M. Spada, and S. Swanson. Reliably
erasing data from flash-based solid state drives. In Proc.

USENIX Conference on File and Storage Technologies,
February 2011.

91

	1 Introduction
	2 Problem Definition and Methodology
	2.1 Problem Definition
	2.2 Methodology

	3 Design of LIFTR
	3.1 Initial Ranking
	3.2 Relevance Feedback Stage

	4 LIFTR Evaluation
	4.1 Evaluation Methodology
	4.2 Impact of Initial Sorting and Relevance Feedback
	4.3 Measuring Investigator Work
	4.4 Strongly Related Pages

	5 Residual Data in Android
	5.1 Yaffs Overview
	5.2 Breakdown of Chunk Composition
	5.3 Filtering Images Using Yaffs
	5.4 Block Churn
	5.5 Inferring Yaffs Parameters

	6 Related Work
	7 Conclusion
	8 References

