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Efficient Tagging of Remote Peers
During Child Pornography Investigations

Marc Liberatore, Brian Neil Levine, Clay Shields, and Brian Lynn

Abstract—Measurements of the Internet for law enforcement purposes must be forensically valid. We examine the problems inherent
in using various network- and application-level identifiers in the context of forensic measurement, as exemplified in the policing of
peer-to-peer file sharing networks for sexually exploitative imagery of children. First, we present a one-year measurement performed in
the law enforcement context. Our proposed tagging method offers remote machines application- or system-level data that is valid, but
which covertly has meaning to investigators. These tags, when recovered, allow investigators to link network observations with physical
evidence in a legal, forensically strong, and valid manner. We present a detailed model and analysis of our method, show how tagging
can be used in several specific applications, discuss the general applicability of our method, and detail why the tags are strong evidence
of criminal intent and participation in a crime. We then describe the tagging mechanisms that have we implemented using the eMule file
sharing client.

Index Terms—Digital forensics, peer-to-peer networking, child pornography, computer crime.
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1 INTRODUCTION

The most popular resource for the criminal acquisition
and distribution of images and video of child pornogra-
phy is peer-to-peer (p2p) networks, including BitTorrent,
eMule, and Gnutella1. Law enforcement (LE) have both
an easy and difficult time policing these networks. On
the one hand, it is easy to identify millions of IP
addresses trafficking in known child pornography (CP),
as we demonstrate in Section 3. On the other hand, this
success falls short in several ways. IP addresses and
application identifiers are the foundation of all current
criminal network investigations, yet IP addresses do not
distinguish multiple physical machines behind a NAT
box. Similarly, it is difficult to link the historical activities
of a single mobile user moving among many IP addresses.
NAT and mobile users represent growing trends.

The value of evidence is the critical difference between
forensics and related security research in incident re-
sponse and privacy; moreover, methods and legal proce-
dures for collecting data differentiate network forensics
from simple network measurement [2]. Making guesses
or inferences may be suitable for discovering the limits
of privacy or advancing incident response, and it may
generate an investigative lead, but on its own it will not
advance a legal case. Strengthening techniques used in
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1. Past studies have found that 28% of possessors of child pornogra-
phy had images of children younger than 3 years old; and that 16% of
investigations of CP possession ended with discovery of persons who
directly victimized children [1].

network-based criminal investigations begins to address
concerns raise in a report by the National Academy of
Sciences [3] calling for a scientific overhaul of forensics,
including digital forensics.

In this paper, an expanded version of our preliminary
work [4], we introduce new techniques that draw a bright
line between the measurement or surveillance of these
networks and collection of forensically valid evidence
from them. Validating the evidence collected during a
network investigation is difficult because remote users
do not necessarily maintain a unique and unmodifiable
identifier that can be recovered upon seizure of their
machine with a warrant. We propose a novel method
of subtly tagging a remote computer over the network
to create such an identifier. Our approach is an advance
over previous methods of gathering information about a
remote computer that rely on statistical characterizations,
including clock skew [5] or radiometrics [6]. These past
characterizations vary with environmental factors such as
temperature or attack [7], leading to both false positives
and false negatives, and crucially, lack the ability to link
together sequential observation by independent observers.
Moreover, we detail why our approach, which is akin to
recording the serial numbers on bills, is legally sound.

For this work, we built a system to gather evidence of
possession of child pornography on a p2p network. It is
in use by law enforcement in all 50 U.S. states, specifically
trained to use the software, who then provided us with
data for almost a full year. To date, the system has
been used to obtain thousands of search warrants. We
characterize these measurements in order to motivate the
future use of our tagging techniques. If tags were found
on a machine during a forensic exam, it would be strong
evidence that the machine corresponds to observations
of a peer made over the network. Unlike methods of
statistical characterization, our method has very strong
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privacy properties: the results can be recovered by
investigators only after a search warrant is obtained from
a judge. Tags observed by third parties are meaningless.
Our careful analysis demonstrates that false positive
probabilities can be driven to near zero. The tradeoff
is the challenge to make sure tags offered to a target are
retained, to be later discovered during an examination.

Specifically, we make several contributions:
• We present nearly one year of investigations into

Internet crime, performed with law enforcement. We
show that enumerating traffickers of child pornog-
raphy on p2p networks is simple, and that such
trafficking is unfortunately common, with millions
of distinct IP addresses participating.

• We analyze the strength of digital evidence relied on
by investigators in these crimes, demonstrating that
these techniques on their own are insufficient beyond
the standard of probable cause for stationary IP
addresses. Moreover, such techniques are insufficient
for demonstrating intent and do not work well for
mobile users.

• Based on the study, we propose a novel method
of strengthening network investigations of criminal
activity called tagging. We analyze its design and
demonstrate that the chances of false positives can
be made insignificant with relatively low overhead.
We also present details of tagging using fountain
codes, which have significantly higher recovery rates
when deletion of stored tags is higher than 5%.

• Finally, we will show how these tags can be used
in several specific applications (including BitTorrent,
eMule, and DNS), discuss the general applicability
of our method, and detail why the tags are strong
evidence of intent and participation in a crime.

Several additions appear in this version of our work: the
empirical analysis has been extended from 5 months of
data collection on Gnutella to 12 months; all details on
tagging based on fountain codes are new; and all details
of our eMule implementation are new.

2 PROBLEM AND ATTACKER MODEL

In this section, we present the motivating problem for
our work: network investigations of criminal activity, and
forensic validation of the evidence of such crimes. We
discuss the investigative process, the legal limitations
upon it, and the problem that forensic validation poses.
We also present the relevant attacker models.

2.1 Problem Statement

When investigating Internet crimes such as trafficking
in child pornography on p2p networks, the general ap-
proach of law enforcement is as follows. An investigator
issues queries for likely child pornography and gathers
results. Some results are chosen for further investigation,
often based on likely jurisdiction, and the investigator
uses an administrative subpoena to compel an ISP to

reveal a physical location that corresponds to the likely
source of network traffic that provided the query results.
Under a warrant, the location is searched, any computer
systems and media are seized, and the media are ex-
amined for evidence of the possession or distribution
of CP. We describe the various legal restrictions that
US investigators operate under in Section 2.2; these
restrictions influence our design decisions.

Our interest lies in effectively identifying the correct
end system. In particular, can investigators strongly
link network measurements with user behavior and
intent? Our goals are twofold: First, we evaluate the
quality of the procedures currently used to perform these
measurements in Section 3.

Thus, our second goal is to improve the quality of
evidence and the range of tools available to investigators.
In particular, we propose the use of tagging. The general
mechanism of tagging is to insert bit patterns that are
unique to each observation, which we call tags, which
are then offered to a target during the course of the
network-based investigation. These tags can later be
recovered from the storage media following a legal
seizure, not unlike bills with known serial numbers might
be recovered after an undercover transaction involving
stolen property or illegal drugs. The tags can then be
used to both link the observations with the media, and
to show a pattern of behavior, and thus intent, on the
part of the suspect.

2.2 Legal and Practical Issues
Data collected during a network investigation can be used
for two distinct, dependent purposes. First, measurements
can establish the identity of a suspect. By identity, we
mean a network or application identifier that can ulti-
mately be linked to an individual at a given time and
place. Second, measurements can be used to establish
intent to commit a crime: a user might accidentally
download a single CP file, but if they have a large
and growing collection over the course of months, it
is highly unlikely to be accidental. Discovering intent
requires consistency of identifiers over time, a property
that we observe does not always hold.

There are three key considerations for law enforcement
conducting network investigations that relate to, but
differ from, those of the typical disinterested researcher:
1. Evidentiary standards: Information that does not
meet an evidentiary standard of either probable cause for
warrants or beyond a reasonable doubt for convictions is
merely reasonable suspicion (a lead), and it is of lesser
value. Information collected about a target that comes
from a third party (e.g., from one peer about another peer)
is not as strong as evidence that was observed directly
about a peer (e.g., from the peer by an investigator).
This distinction between leads and evidence is roughly
analogous to the difference between observation studies
used to generate hypotheses, and controlled studies used
to test them. Investigators rely upon both evidence that
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was publicly shared and evidence acquired through a
magistrate-approved search warrant or other valid legal
procedures. By design, our technique leaves tags that are
recoverable only via a search warrant.

Generally, investigators use network identifiers, such
as IP addresses, only for obtaining a search warrant.
IP addresses are generally regarded as meeting only
the standard of probable cause — good enough for a
search, but not convincing enough for prosecution on
their own. IP addresses and application-level IDs can
vary significantly over time, so skepticism is warranted.

2. Intent: Many crimes include intent as a requirement
for conviction. Possession of CP is not illegal when
unintentional, e.g., if unknowingly held in a spam folder.
Among other indicia [8], multiple attempts to download
CP, a growing collection, or the presence of organized
archives can demonstrate intent. Our techniques can be
used to demonstrate intent in these cases.

3. Public-use technology only: Kyllo v. U.S., 533 U.S. 27
(2001) established some parameters regarding the use of
technology to collect public information. In U.S. v. Gabel,
2010 WL 3927697, it was ruled that software designed
to log public sharing of CP on p2p networks does not
violate parameters and rules established by the Kyllo
decision. Similarly, our proposal works with unmodified
network protocols that are in general public use. We also
note that recording serial numbers of bills stored in a
cash register before they are given or taken by others is
a technique unchallenged in courts.

Finally, we note that in this paper we define forensically
valid techniques based on the standards set by Daubert
v. Merrell Dow Pharma. 509 U.S. 579 (1993): they have
a known error rate, are based on testable hypotheses,
are based on accepted scientific methods, and are peer
reviewed.

2.3 Attacker Models and Assumptions

We have two actors in our scenario. We define the
investigator’s attacker model as follows: An investigator
of a given p2p system: (i) seeks to identify users of
the protocol in possession of, or distributing, child
pornography — typically, an IP address within their
jurisdiction is the endpoint of the network investigation;
(ii) must work within the protocol, and cannot rely upon
criminal activity or privilege escalation to gather evidence;
(iii) can consider indirect evidence to generate leads, but
must have direct evidence to succeed (i.e., seeks a direct
network-level connection to a remote user’s system).
A criminal’s attacker model and goals are markedly
different. A criminal: (i) will actively attempt to acquire
new CP; (ii) can redistribute and advertise possession
of CP; (iii) can actively manipulate the protocol, violate
laws, or engage in anti-forensics to hide their activities.
Clearly, a criminal actively attempting to hide their trail
will be harder to catch; we discuss the likelihood and
impact of such attempts in Section 4.2.

3 EMPIRICAL STUDY OF CRIME AND IDENTI-
FIERS ON P2P NETWORKS

Our goal in this section is to demonstrate the lower
evidentiary value of IP addresses and application-level
IDs when used on their own in network investigations.
This lower value is the result of widespread use of DHCP,
mobile networking, and the presence of botnets, and we
provide some quantification of this problem.

3.1 Collection Methodology
Our empirical results are based on our one-year measure-
ment study of child pornography (CP) file sharing on
p2p networks. Our data was collected using a tool we
wrote for monitoring and investigating sharing of child
pornography on Gnutella networks [9]. As a consequence
of our efforts, our tool RoundUp has been adopted as
a standard for p2p investigations by the US Internet
Crimes Against Children (ICAC) Task Force [10]. ICAC is
a collection of law enforcement agencies from all 50 states.
Data from almost 600 participating detectives’ actual
investigations of CP trafficking on Gnutella were stored in
a centralized system under police control; investigations
were not automated. We analyzed anonymized data.

From 10/5/2009 to 9/30/2010, LE using RoundUp
collected measurements of 4.39 million IP addresses using
1.35 million GUIDs publicly sharing CP. A GUID is
Gnutella’s application-level identifier that is chosen at
random during installation, and changeable thereafter. In
all, 149,302 distinct CP files were observed at least once
on the Gnutella network. These CP files were checked
manually at least once by law enforcement, and we
identify multiple instances by hash value. The records in
the database exist due to the particulars of the Gnutella
protocol and the efforts of our LE partners. Specifically,
records are either the result of a Gnutella search for
filenames matching CP-related keywords, a direct TCP
connection to a remote peer and a browse list of their
shared files, or swarming information from a remote peer
that indicates that a third peer has also been sharing
the same file (identified by SHA-1). In all cases, these
records included remote IP, GUID, software and version,
filename, file size, and SHA-1 hash value, and were stored
with a timestamp. We used MaxMind, Inc.’s IP-based
geolocation service at the time of measurement to place
IPs in a city. The database stored information only about
peers that shared known CP.

While Gnutella is not the most popular p2p program,
our statistics show it is popular with CP file sharers. We
also characterized BitTorrent measurement data collected
by Menasche et al. [11]. While our study focused on
CP, the data collected by Menasche et al. measured non-
contraband content on BitTorrent. Their study measured
torrent activity between 8/2008 and 3/2009. Their work
includes the details of their measurements, but our focus
is on records indicating the IP address and BitTorrent
PeerID of participants sharing pieces of torrents. Measure-
ment of these torrents and the peers was performed using
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PlanetLab-based measurement proxies that gathered
information from trackers. For this dataset, all MaxMind
queries were performed by us on one day in spring 2010.
Our conclusions about evidence on Gnutella GUIDs and
IP addresses are validated by observing the same results
for BitTorrent PeerIDs and IP addresses, as we describe
below. We begin with a summary of the success and
limitations of the current investigative approach.

3.2 The Current Investigative Approach
As we stated in Section 2.1, data collected during network
investigations are used only as a stepping stone to obtain
legal authority to search a physical location for evidence
of a crime.
Success of existing approach. In the course of a physical
search, storage media are examined for CP and evidence
of intent, such as cached search terms. The presence of this
evidence is used to create a case for criminal possession
of CP. This methodology has been used successfully in
thousands of investigations in the U.S.
Limitations of existing approach. There are three key
limitations of the current approach. (i) When network
investigations lead to search warrants, it is evidence
found from the search that is often used as the basis for
criminal prosecution. In fact, there might be no connection
between what is observed on the network and what
is found in the search if, among other reasons, users
delete or encrypt files or install new client software.
(ii) Positively identifying a seized machine as the same
one that was investigated remotely might be a chal-
lenge. Circumstances such as network address translation,
DHCP lease times, and mobile interfaces can cause
a mismatch. Similarly, many file sharing applications
do not provide a stable unique identifier for the user.
For example, BitTorrent does not require fixed PeerIDs,
and Gnutella does not ensure each client’s self-assigned
Globally Unique ID is, in fact, globally unique. (iii) Intent
is a critical part of the definition of criminal CP possession
and distribution. Intent can be demonstrated legally in
several ways [8]. Unfortunately, one form of evidence of
intent on p2p networks — sharing on the network over
a long period of time — cannot always be demonstrated
easily in court. An even greater challenge is to definitively
show that the same person is responsible for using
multiple GUIDs or multiple IPs over time, particularly
over open wireless access points.

It can be challenging to find the evidence of a crime:
The subject of investigation might hide it within the
system with encryption or steganography, or might
keep the material on a removable storage device that is
physically concealed. In cases where the investigator does
not locate the material that was seen as being available, it
may not be clear whether the wrong system was seized or
if the material simply hasn’t been discovered. A reliable
indication that the correct system was seized, as we
propose in the Section 4, can help resolve this dilemma
and the others above.
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Fig. 1: For a given lower bound on the number of IP addresses
(or cities), this plot shows the number of application-level
identifiers observed to meet that bound. All 1.3 million Gnutella
GUIDs were observed at one or more IPs. About 78,000 were
observed at 10 or more IPs.
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Fig. 4: For a given lower bound on the number of application-
level IDs, this plot shows the number of IPs observed to meet
that bound. For example, in the BitTorrent data, all 11.7 million
observed IPs were observed using one or more PeerIDs, while
about 102,000 were observed using 10 or more PeerIDs.

3.3 Identity and Intent in P2P Networks
Fig. 1 demonstrates how application IDs can fail as
a unique identifier. The figure plots the number of
IP addresses associated with each ID in the data. For
Gnutella, this consists of GUIDs that have been identified
as trafficking in child pornography. In our data, about
78,000 GUIDs were each associated with 10 or more
IP addresses. A separate line plots the same data by
geographic location, with 7,031 GUIDs present in 10 or
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Fig. 2: A subset of the data from Fig. 1, this plot shows the minimum number
of distinct cities or IPs associated with a given application identifier, limited
to the IDs that were observed only in a single small geographic region.
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Fig. 3: For a given lower bound on the
number of days a Gnutella peer was seen
online, this plot shows the fraction of peers
as distinguished by GUID observed to meet
that bound (the CCDF).

more cities. BitTorrent is similar. E.g., there are 5,400
PeerIDs that map to IPs found in more than 10 cities.

One particular GUID was observed in 329 cities around
the world using 398 IP addresses. We found this GUID
was sharing exactly one file. This file (identified by hash
value) was found throughout the network with many
different filenames. We assert this GUID is actually a
botnet that responds to queries for any term x on the
network with x.mpg, always sharing the same malware
content. The existence of this GUID shows a potential
difficulty in assuming that GUIDs are unique identifiers
for corroborating an investigation with a seized machine,
as this GUID appears to be shared by many users. These
observations point to a weakness in such IDs that may
skew all data points collected, but in a non-obvious
way. Within a legal context, as compared to a network
measurement study, the implications are more serious: a
GUID observed in 329 international cities is not valuable
as evidence.

Another problem is posed by mobile users. Fig. 2
isolates IDs that report from 2 or more IP addresses all
located one state or region of a country. Since these IDs
have IP addresses that map to only one geographic area,
we assert that it is most likely one real user, as botnets
and misconfigurations are unlikely to be contained to a
geographical area. It is unclear to us if these users are
sharing their ID with friends, or are accessing diverse
open WiFi [12], [13]. This data suggests either that these
identifiers are weak, or that users actively move around
to avoid detection; either motivates our tagging solution.

Fig. 4 demonstrates the related problem of relying on
a peer’s IP address as a unique identifier of a specific
computer. The figure plots the number of IDs observed
per IP address. For example, 6,239 IP addresses were
each linked to at least 5 different GUIDs in our database.
It is not clear to us whether the GUIDs represent five or
more different users behind one NAT box or if one user is
responsible for all activity from that IP using five or more
GUIDs. In BitTorrent, this problem is worse, with 426,425
IPs using at least five PeerIDs in our study. Since PeerIDs
can be generated per torrent, it is almost impossible to

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+00 1e+01 1e+02 1e+03 1e+04
Known Child Pornography Files Shared

G
U

ID
s 

w
ith

≥
K

no
w

n 
C

P
 F

ile
s

All GUIDs
GUIDs in US

Fig. 5: For a given lower bound on the number of known CP
files shared by a peer, the number of GUIDs observed to meet
that bound. Across all observations, all 1.2 million GUIDs
were observed sharing at least one files, while about 530,000
were seen sharing 10 or more files. All peers observed were
sharing at least one such item due to LE methodology.

link the download of a torrent with a specific installation
on a computer, or even a specific user on a computer.2

Fig. 5 shows that GUIDs originating in the US are
only about 33.5% of all traffickers. Over 530,000 GUIDs
worldwide had 10 or more CP files, and most shared
a single file; the metric underscores the scope of the
problem as it represents only known CP. The users corre-
sponding to these GUIDs often share as-yet-unknown CP
or files that have yet to be manually checked by LE; have
archived large collections that aren’t being shared but
found upon execution of a search warrant; or turn out to
be contact offenders. Fig. 3 demonstrates that many users
are observed repeatedly over long periods of time. The
figure also shows that users with larger collections (some
have thousands of files) tend to stay on the network
longer, an indicia of intent. Unfortunately, with current
techniques it is unknown if some of the GUIDs observed
once in these two figures are actually the same user.

2. These data were collected before µTorrent, a popular BitTorrent
client, began randomizing PeerIDs per-download by default.
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4 REMOTE DEVICE TAGGING

Forensic measurements that attempt to tie observations
together using information provided by an application-
level protocol face a challenging problem. As we demon-
strated in the previous section, it is already the case
that not all connections are one-to-one between peer
and IP address. Cellular providers make use of NATs
and a small pool of shared address that are re-assigned
frequently, and they are an increasingly common, high-
bandwidth choice for network access. Furthermore, users
are often in possession of many devices in one home,
and investigation of every device during execution of
search warrant is sometimes impractical. In short, remote
network identifiers increasingly lack uniqueness and
consistency.

In this section, we propose a novel mechanism to offer
a tag to a remote device that is under investigation. We
begin by presenting the tagging process and follow with
a discussion and analytical model of the process. We
separately discuss tagging for systems where deletion is
unlikely and systems where deletion is likely. In the next
section, we show several tagging opportunities that exist
in eMule, BitTorrent, and DNS.

4.1 The Tagging Process
We propose the tagging of remote machines by investi-
gators, to leave a record of an observation on the remote
machine for later recovery during warranted search. We
envision the general process in three steps as follows.

First, investigators discover a vector for tags: we define
a vector as a set of bits embedded in a protocol that can be
set within the bounds of the protocol by the investigator
and offered to a remote machine under investigation.
Further, these bits or some function of them must be
stored by the remote machine on non-volatile media. For
example, as detailed in Section 5, BitTorrent peers will ask
each other their application name and peer ID, and there
are minimal restrictions on these values. These values
may be stored in a file at the target and can function
as tags to uniquely identify the remote machine. No
unauthorized access to the target’s machine is required;
tags are offered in the normal function of a system.

Second, when directly connecting to a remote machine
during an investigation, investigators use an appropriate
vector to tag the machine. Tags are selected in such a way
that their meaning is not obvious and to minimize the
likelihood of collision. The investigator records the tags
used to so that they can be validated when recovered.
One method of selecting tags is to take a hash value of
text representing specific details of the investigation. This
hash can be provided to commit the investigator to one
or more values ahead of the search. The root of a Merkle
tree of all hash values used for a specific time period is
an efficient method of committing to a series of values.

Finally, upon issuance of a warrant, investigators seize
a machine and look for known tags on it. These tags may
be found in the expected place, or recovery may require

more advanced forensic techniques such as file carving.
Tags that are recovered from a seized machine validate
that it is a specific system that was investigated over the
network. Because recovery requires a judicially approved
warrant, and because the meaning of the tags is hidden,
our approach has robust privacy properties.

There are two ways in which retrieving tags from a
machine can fail. False negatives occur when tags that
were offered by an investigator are unrecoverable, due
to deliberate user action, log rotation, cache eviction, and
so on. In these cases, the tags will not be available as
evidence. False positives occur when investigators recover
tags that they did not actually offer. We examine these
problems below.
Tagging methods. Our results are based on two classes
of tagging. In both, we address the problem of tagging
when space is minimal by offering a large tag of n bits
as k smaller subtags. The size of each subtag is n/k bits.
The two classes differ as follows.
• Standard Tagging: In our standard approach, we

offer k subtags to a remote machine, and all k subtags
must be recovered to reconstruct a larger tag. We
present several methods, and each represents a trade-
off between the subtag size and the false negative
rate as well as the number of sessions that can
be tagged globally. Storing multiple copies of each
subtag will reduce the false negative rate (FNR),
while increasing the length of each subtag will reduce
the false positive rate (FPR).

• Fountain Code Tagging: In this approach, we store
multiple subtags of size n/k each, and any dk ∗ 1.05e
are sufficient for recovering the larger tag. This
approach survives subtag deletion more robustly.
The tradeoffs are more complicated because subtag
size is a largely separate parameter from the full tag
size. As above, storing more subtags on a remote
target will reduce the FNR, while increasing the
length of each subtag will reduce the FPR. Subtag
length has no effect on the number of sessions that
can be tagged globally. Instead, increasing the tag
length increases the total number of sessions that
can be tagged globally, but doing so also increases
the FPR of individual machines.

4.2 False Negative Rates
Given that in our model we allow the criminal to erase
evidence from their own machine, why do we expect
our techniques to work at all? There are many reasons.
First, unlike most mechanisms in security, most forensic
mechanisms are not subject to catastrophic failure: even if
one person can and does erase evidence of their actions,
that does not imply that everyone else will do likewise,
nor does it mean that one person can erase evidence for
everyone else. Further, it is still worth investigating those
that do not erase evidence. In contrast, if there exists a
security exploit in Windows, then one user can comprise
every Internet-accessible Windows machine.
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Secondly, these crimes are not always committed by
persons with great savvy — the quantitative proof is
the measurement we present in Section 3: we identified
4.39 million IPs (using 1.35 million GUIDs) sharing
known images of confirmed child pornography. These
observations are based on a database of hash values.
Anyone can trivially circumvent a hash match for a
particular file, yet millions did not.

Thirdly, we expect that generally application develop-
ers will not help unsavvy criminals nor aim to thwart
tagging mechanisms. Since the tags are impossible to
trace back to investigators, developers will have no sense
of whether they are being used. To be sure they are
not open to any tagging and not just the mechanisms
we propose here, developers would need to perform a
covert channel analysis [14] on their program as well
as all OS libraries in use, likely blocking all caching,
logging, and similar output from both. Moreover, our
methods are designed to tag system mechanisms that
improve performance when left enabled (e.g., the DNS
cache); we assert that developers are in general more
interested in improving performance than protecting
traders of child sexual exploitation imagery. Of course,
the copyright enforcement actions of trade groups such
as the RIAA and MPAA are thwarted actively by some
p2p developers. However, the civil torts these groups
pursue require only relevance for subpoena of a target
machine (the 4th Amendment does not apply) and the
much lower standard of a preponderance of evidence at
trial. In short, our tagging techniques would be overkill
for supporting civil torts. Again, there is no incentive to
remove tagging vectors.

Finally, we show that tagging can leverage fountain
codes [15] to achieve successful recovery even the prob-
ability of deletion is high. We can encode a full tag as
many smaller subtags such that recovery requires only
relatively few subtags are found. Because any ordering
or subset of subtags are sufficient, fountain codes are a
versatile solution for systems where the exact deletion
characteristics are unknown ahead of time.

False Negative Model. Let p be the probability that a

single subtag is not deleted, and assume that deletion is
an i.i.d. process. Assume that we have a full tag that is
stored as k subtags, and that we offer W subtags to a
remote peer. Each of the k subtags will be stored W/k
times, and we require at least one copy of each subtag
to recover the full tag. The probability that the full tag
cannot be recovered is

Pr{False Neg.} = 1− (1− (1− p)W/k)k (1)
On the other hand, by applying fountain codes [16], we
must recover any dk ∗ 1.05e of the subtags (we explain
this value in detail below). The chances that recovery is
not possible is

Pr{False Neg.} = 1−
W∑

i=dk∗1.05e

(
W

i

)
pi(1− p)W−i (2)

Eqs. 1 and 2 are plotted in Figure 6 for k = 4 and
several values of p. The fountain code approach has
extra overhead but it allows for greater flexibility during
recovery. When the chance of recovery of a subtag is
lower than about 95%, the overhead of fountain codes
begins to pay off. For environments with a high deletion
rate, fountain codes are an obvious choice in terms of
efficiently lowering false negatives.

4.3 Modeling False Positives of Standard Tags

In this subsection, we analyze the false positive rates of
tags offered to and stored by systems that delete data
with a low probability. In Section 4.4, we perform the
same analysis for a tag scheme that leverages fountain
codes to mitigate high deletion rates.

Tags are most useful as evidence after a search warrant
has been executed. Therefore, how certain are tags as
evidence? In other words, what is their false positive
rate? How do different tag sizes, numbers of tags, and
tagging schemes interact with the FPR? We probe these
questions here.

We define false positives as when a machine that was
never tagged appears to be tagged. The analysis we carry
out to determine false positives applies equally to the
scenario where an adversary places tags on a third-party
victim’s machine in an attempt to frame the victim, as we
assume the attacker doesn’t know which tags are used
by investigators.

Model assumptions. Assume investigators tag target
machines with an n-bit tag each time they are observed
on the network (called a session), and they keep a database
of T entries. The number of entries is exactly the space of
all tags that have ever been or will ever be assigned for
a distinct taggable event. Each entry will include other
essential information about the investigation: the name
of the investigator, the date, the tagged IP address, etc.
Here we set T = 2

n
f , and therefore the chance that a

recovered tag (that was not offered by investigators) is
a false positive is T/2n. We assume f > 1, where 1/f
is the fraction of table space used for a tag, since when
f = 1 the chance of a false positive is 1. We discuss how
f affects performance below, and in fact it is one of two
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variables that must be decided ahead of time. We let L
be the number of candidate tags that are discovered (i.e.,
those subtags that are not deleted).

In the analysis below, we assume a log file is recovered
from a seized machine and that, unbeknownst to inves-
tigators, the machine has never been tagged. In other
words, any bit fields that contain apparently valid tags
contain bit strings drawn from some unknown distribu-
tion, which we assume is independent of the tagging
database. For simplicity, we assume that distribution to
be uniform.
Large tags. The simple case for tagging is when n is very
large; in that case, it is easy to make it improbable that a
tag found on seized machine falsely matches a tag in the
database. The chances that one or more of L candidate
tags match stored values in the database is

Pr{False positive} = 1− Pr{no matches}

= 1− (1− 2n/f

2n
)L (3)

However, the maximum value of n is not chosen by
the investigator; it is a constraint of the tagging vector,
as discussed in Section 5. To illustrate, consider when
L = 2000 and f = 2, then the chances of a false positive
are less than 10−6 when n = 64 bits. However, if n ≤ 32,
the chances of a false positive is greater than 3%, which
is most likely too high.
Small tags. In some situations, the tag size n is limited
and we require a low false positive rate. To overcome
this limitation, we have the investigator generate and
use many subtags per session. Subtags are generated
by splitting n-bit tags into k equal-length parts. An
investigator then offers subtags to a remote machine
k times in a session.

There are two scenarios that we must consider.
• Case A. The subtags are stored by the target machine

in a preserved order that can be recovered.
• Case B. The subtags are stored by the target machine

in an unordered set that prevents ordered recovery.
For the unordered case, we offer two solutions: (B1)
tagging the target k times each session; and (B2)
allocating space in the subtags to denote the order
for recovery of the full tag, which we show below
is a better solution.

We derive the false positive rates of the three approaches
below and then compare their performance.
Case A: Order Preserved: Concatenated subtags. In this
case, we assume subtags are written to a sequential log
file, and that investigators can reconstruct the original tag
by assembling subtags in the order they are recovered
from the log file. It may be that other data is inserted into
the target’s log between subtags, which can result in false
positives. Here, we model the most conservative case: we
show the number of false positives given that none of
the L candidate subtags were placed by investigators.

When the machine is recovered, the investigator will
accept the machine as tagged only if k of the L subtags,
when concatenated, appear in the database of T assigned

tags. The problem is that investigators must try every
combination of

(
L
k

)
found, which creates a large number

of potential false positives. Here, T = 2
n
f as before (and

subtags are n/k-bits long). The false positive rate of the
concatenated tags is
Pr{False positive} = 1− Pr{no full tag matches}

≤ 1−
(
1−

(
L

k

)
1

2n

)2
n
f

(4)

Note that this is a conservative upper bound, not an
equality, as we have elided the inclusion-exclusion terms.

Case B1: Unpreserved Order: Multiple subtags. In
this case, the target machine does not store tags in a
preserved order. In this solution to the problem, we have
investigators offer the machine k subtags that share the
same database. Therefore, there is a limit of T = 2

n
fk tags

that can be assigned.
The false positive rate for the case of k subtags of

bn/kc-bits each is given by a Binomial distribution.
Pr{F.P.} = Pr{k or more of L subtags match}

=1−
k−1∑
i=0

(
L

i

)
(2

n
fk−

n
k )i(1− (2

n
fk−

n
k ))L−i (5)

Eq. 5 quantifies the tradeoff between using one tag of
n bits and k subtags of one bit each, and all cases in
between.

Case B2: Unpreserved Order: Labeled subtags. When
the tagged machine stores the subtags in an unordered set,
a better solution is to give each subtag its own database,
or to otherwise label each subtag to constrain the set
of possible databases it could be in. For example, we
can reserve log2 k bits in each subtag to denote which
database it is in. In that case, each subtag has length
r = bn/kc − dlog2 ke bits, and we have T = 2rk/f tags
possible. To determine the false positive probability, we
assume that the L candidate tags are equally divided
among the k subtag databases. Therefore, there are (L/k)k

candidate full tags to evaluate; each must not match an
assigned value.

The false positive probability is modification of Eq. 3:
Pr{F.P.} = 1− Pr{none of (Lk )

k subtags match}

= 1−
(
1− 2rk/f

2rk

)(L
k )k

(6)

As we discuss in Section 5.2, specific ranges of IP
addresses such as CIDR blocks can be used as tags. In
this case, the fixed prefix of the CIDR block serves in
place of the log2 k bits that would otherwise be reserved
to denote the sub-database. The no-cost nature of these
prefix bits explains the improved performance of this
method in the comparison below.

4.3.1 Sessions Taggable by Each Method
To compare these three methods, we assume the investi-
gator knows the vector-specific length of each subtag and
value of L, and has a desired FPR. Her job is to select
f and k such that the false positive rate is achieved and
the number of sessions that can be tagged is maximized.
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Fig. 7: The false positive rate as a function of the number of
bits per subtag, corresponding to k = 4, f = 3, and L = 2000.
The exact values plotted are from Eqs. 4, 5, and 6.
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Fig. 8: The number of sessions that can be tagged as a function
of the number of bits per subtag corresponding to k = 4, f = 3,
and L = 2000. Each plot is based on the case’s formula for T .

In general, larger values of f and k lower the FPR but
reduce the number of sessions that can be tagged. We
assume the goal is to minimize k, since if more tags are
required to be stored, it is more likely that in general
that the tags may be removed by normal operation of
the machine.

Accordingly, we evaluate three questions: (i) For a
desired false positive rate ρ, what is the minimal value
of f? (ii) How does the number of sessions, T , that can
be tagged vary with f? (iii) What is an acceptable FPR?
We explore these questions in several ways.

First, as quantitative examples, we compute the FPR
ρ and number of sessions for each method when k =
4andf = 3, and when L = 2000 candidate tags are found
based on Eqs. 4, 5, and 6. The false positive rates for the
three techniques is shown in Fig. 7. Note the x-axis is
the subtag size and not n. In all cases, the probability of
a false positive decreases exponentially with the subtag
size, and it is less than 10−6 when subtags are at least 22
bits. Similarly, Fig. 8 compares the number of sessions
that can be tagged by each method, including the CIDR
variant of Case B2, based on the definitions of T for
each. The number of sessions offered by Case B1 is many
orders of magnitude lower than the other solutions.

Second, we address the broader question of how to
choose f and T for a given FPR ρ. While Figs. 7 and 8

used the subtag size as the independent variable, here
we assume the subtag size is fixed and that L is given.
For Case A, a minimal value of f from Eq. 4 is

f = n/log2

(
log(1− ρ)/log (1−

(
L
k

)
2n

)

)
(7)

Since T = 2n/f , we can state T in terms of ρ as

T = log(1− ρ)/ log (1−
(
L
k

)
2n

) (8)
For Case B2, we have from Eq. 6

f = rk/
(
log2(1− (1− ρ)1/(

L
k
)k ) + rk

)
(9)

and since T = 2rk/f , we can state T in terms of ρ as
T = (1− (1− ρ)1/(

L
k
)k )2rk (10)

Second, we offer the following simple algorithm that
allows an investigator to set f and k. (1) Select a desired
false positive rate ρ, and set k = 1, which determines the
subtag length. (2) Calculate f and the maximum number
of taggable sessions, T , using either Eqs. 7 and 8 (Case A)
or Eqs. 9 and 10 (Case B2). (3) If T is too small, increase
k (which implies an increase to n), and goto Step 2.

The question remains as to what false positive rate is
appropriate. Historically, law enforcement around the US
have made about A = 2000 arrests per year. We use this
number as an example, however in practice, we can keep
one set of tables per available tagging channel. To set
ρ, we assume that all the arrests are mistakes, and let
ρ = 0.1A such that the expected number of arrests that
have a false positive tag is 0.1. Chernoff bounds could
be used to ensure that values above the expected mean
occur with very low probability.

4.4 Case C: Fountain Codes

In this section, we show how fountain code codes can be
used to improve tag recovery while maintaining a low
false positive rate for small subtags.

Like the above strategies, a single session’s tag is
encoded over many entries that are later gathered for
reconstruction. Using fountain codes [15]–[17], we write
many subtags and any k subtags in any order can be used
to recover the original n-bit tag. Each subtag is b-bits long
and is composed of v bits that encode the original tag and
c bits that are necessary for decoding and checksumming.
Fountain codes require k > (nv + ε) entries to recover the
original tag. In practice, k ≈ 0.05nv [16]. The investigator
therefore aims to offer many more than k entries to the
target to ensure identification.

Rateless encoding schemes are more often applied to
the transfer of large amounts of data, and the additional
metadata needed for decoding is amortized over large
packets. Our challenge is that we desire to encode
a string of about 32–64 bits and have no ability to
amortize overhead costs in each entry. Another challenge
introduced by our use of fountain codes is we wish
to offer a single machine tags over many sessions, and
the entries for each distinct tag must not collide during
reconstruction. For simplicity, our scheme is based on LT
codes [15].
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Encoding. The scheme works as follows. Each time an
investigator wishes to offer tags to a remote machine at
a specific remote IP, he uses a different session key. The
key for session i is Si. Each key is derived from the a
master key S as Si = hmacS(i). The value of Si is the
same for all remote IP addresses but the key used for
the session is randomly selected without replacement.
The maximum value of i is a parameter that we discuss
below, but we expect i to be typically less than 1,000.

Once the key is selected, an n-bit tag is selected. No
combination of tag and Si is repeated, and unlike the
schemes above, no part of the tag space is reserved to
prevent false positives: the space of all tags is 2n ∗max(i).

Following the LT code encoding algorithm, an n-bit
tag is divided into d blocks of n/d bits each. Each block
is indexed from 1 to d. We don’t describe the algorithm
here, but to encode n, a random selection of between
1 and d blocks are xor’ed together. To enable decoding,
each entry should hold the resulting n/d bits and the
indices used. For example, if n = 24, then with d = 4
blocks, the largest entry would store 24/4 + log2(4) = 14
bits. However, because the xor order doesn’t matter, there
are only 56 combinations of 1 to 4 blocks. Therefore, we
store only a 6-bit entry that indexes a lookup table stored
by the investigator describing which blocks where xored.
(We require only one such table globally.) In general, we
require dn/de+ dlog2(

∑d
i=1

(
d
i

)
)e bits. It is easy to show

that the optimal choice for n = 24 and n = 32 is d = 4,
and for n = 48 it is d = 6; the resulting total encoding
sizes per entry are 10, 12, and 14 bits, respectively. For
the rest of this section, we always use optimal choices of
d for any particular value of n.

Raptor codes (a variation on fountain codes) are more
resilient to noise channels [18] in general. However, we
desire strong, parameterized guarantees for a reconstruc-
tion process using very few bits at a time. In our scenario,
a noisy entry is one not placed by the investigator. Using
a noisy entry to decode the original tag can result in an
incorrect result. We ensure that the investigator selects
only from true entries by using a checksum for each entry
(a well-known solution).

We break each b-bit entry up into two parts:
• v-bit encoding. The encoding for an n-bit tag is
v = dn/de+ dlog2(

∑d
i=1

(
d
i

)
)e

• A c-bit checksum. We let C = checksum(V, Si) be
the value of the checksum. We set the length to
c = (b − v) bits long. For example, we can set C
to be the c least-significant bits of a cryptographic
hmacSi

(V ) function, keyed with session key Si.

Decoding. The tag recovery process is as follows. Once
a machine is searched, all L recovered entries are candi-
dates for identifying the original tag. For each key ever
used, each of the checksums of the L entries are validated.
We create a set li consisting of the entries that were valid
for key Si. From the set, k are randomly selected and the
tag is recovered. If k entries cannot be found, the set is
discarded.
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Fig. 9: For a fixed number of trials, M = 5, the false positive
rate greatly decreases as the number of trials that need to agree
increases. The plot assumes a sufficient number of subtags
are present and that n = 24 is fixed. Based on Eq. 13 with
max(i) = 1.

1e−08

1e−07

1e−06

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

10 12 14 16 18 20 22 24 26 28 30 32
Bits per subtag

P
ro

b(
fa

ls
e 

re
co

ve
ry

)

n=24,M=1,needed=1
n=24,M=3,needed=2
n=24,M=5,needed=3

Fig. 10: As the number of trials increases from M = 1 to
M = 5, the FPR greatly decreases, such that a majority of the
trials need to agree upon the same answer. The plot assumes a
sufficient number of subtags are present and that n = 24 is
fixed. Based on Eq. 13 with max(i) = 1.

False Positives. The derivation of the FPR of fountain
code tags must include the probability of a subtag falsely
passing a checksum and our use max(i) sessions keys.

The probability of a false checksum match for one
subtag (for a given session key i) is

Pr{false pos. subtag} = 1/2c (11)
Some subset of the subtags on the machine will have
a correct checksum. Given that we need k entries to
recreate a tag, if we select k = dn/d + εe subtags, the
chances of falsely reconstructing a full tag is equal to the
complement of selecting k true entries.

α = Pr{false pos. tag}
= 1− (1− 1/2c)d

n
d +εe (12)

Eq. 12 is an over-estimate: the fountain code algorithm
itself is unlikely to converge falsely for random values.
However, in the analysis in this section, we conservatively
assuming the code will converge for any input.

The FPRs described by Eq. 12 are not very low.
However, there are a few methods for improving upon
these false positive rates further. Assume that the set
of entries with correct checksums is larger than k. To
recover the tag, we select k entries uniformly at random
M times, and we let the recovered tag be equal to the
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Fig. 11: When a single machine is tagged multiple times, there
are greater chances for a false positive. The chances of one
or more false positives when a machine is found with 300
candidate tags, plotted for various values of n (24, 32, and
48), with a majority vote among M = 5 trials for each session.
These plots are based on Eq. 14.

majority vote of the M trials. p equals Eq. 12. We seek the
probability that M/2 or more trials are falsely recovered.

Pr{false pos. tag| max(i) = 1, M trials} =
M∑

j=dM/2e

(
M

j

)
αj(1− α)M−j (13)

Fig. 9 shows the reduced FPR for recovering a tag
when M = 5 trials are used in the case that n = 24 and 3,
4, or 5 trials must agree on the result (Eq. 13). Similarly,
Fig. 10 shows the FPR when M is varied from 1, 3, and
5, and the majority vote is scaled accordingly (from 1,
2, and 3, respectively). These results can be compared
against the FPR for standard codes, shown in Fig. 7. In
short, fountain codes are more flexible than standard
codes in terms of testing for a true result.

Lastly, we compute the error introduced by using
max(i) session keys: each session key introduces its own
chance for false recovery. The probability of one or more
false recoveries given |K| sessions keys is equal to the
complement of no key resulting in a false recovery:
Pr{false pos. recovery| max(i) sessions, M trials each} =

1−

1−
M∑

j=dM/2e

(
M

j

)
αj(1− α)M−j

max(i)

(14)

Fortunately, as Fig. 11 illustrates, although the FPR rate
drops linearly with the magnitude of max(i), the values
are still small.

4.4.1 Number of taggable sessions
The number of taggable sessions for fountain codes has
no trade-off against the subtag length: T = 2ni. It is a
straight advantage over standard tagging.

5 AVAILABLE TAGGING VECTORS

For tagging to be practicable and of maximum value,
several conditions must hold. First, a machine under

investigation must be able to receive data from a remote
source. Second, that data must be stored in a fashion
that can be retrieved by investigators if the machine is
physically seized. Third, investigators must be able to
work with this data in such a way that it is specific to a
single investigation — re-using tags dilutes or nullifies
their evidentiary value, violating the assumptions we
make in our security analysis. The information will only
be recovered when legal authorization by means of a
search warrant so allows. Here, we discuss the general
manner by which such opportunities can be found and
present several specific tagging vectors.

Though several of the approaches that we describe
are available in the field, and our eMule tagging imple-
mentation has been made available to law enforcement,
we do not present specific results in this paper. We, of
course, cannot issue search warrants to acquiring the data,
and collecting the data would involve an IRB-approved
process for obtaining informed consent.

5.1 Discovering Available Vectors
In our experience, offered tags that are stored ultimately
reside in one of two places: log (or audit) files, and
cache files. Across many systems, log files record both
regular and exceptional events. Log files exist for audit
and debugging reasons, and typically include many
details of triggering events. Cache files exist to improve
performance or reliability of systems. For example, most
p2p applications store data about remote peers for
several purposes: to allow for decentralized operation and
bootstrapping; to enable efficient load distribution; or to
enable optimizations such as tit-for-tat. The removal of the
taggable files would be detrimental to the performance
of the system that creates them, and therefore these are
the best candidates.

There are several ways in which tagging opportunities
can be discovered. We used a manual, ad hoc process to
discover the tagging opportunities we describe below.
We conjecture that both static and dynamic analysis
techniques can be applied to applications to find tagging
vectors. It is an interesting problem for future work.

5.2 Specific Tagging Vectors
Here we give several specific examples of vectors that
currently exist in the regular functioning of p2p file
sharing software. For the eMule file sharing network, we
describe our implementation. We present the remaining
opportunities as proofs-of-concept, and not as fully
developed tagging systems. A limitation of our work
is that we do not evaluate the churn of these systems.

5.2.1 Tagging in eMule
eMule utilizes a credit system between pairs of clients.
When a client A is able to download portions of a file
from another client B, the receiving client A credits the
sending client B for the downloaded bytes. If the roles
are later reversed and client B attempts to download a
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portion of a file from client A, A will give download
priority to B over other clients.

eMule clients are uniquely identified by their user hash,
a 128-bit value that consists of 14 random bytes that are
generated when an eMule client is run for the first time.
The user hash is exchanged between clients whenever
they establish communication. Because user hashes are
openly exchanged, it is easy for a knowledgeable user
to impersonate another client by presenting a falsified
user hash. To guard against clients impersonating others
to improperly receive download priority, secure user
identification may be exchanged between clients. The
exchange is initiated at the request of either client based
on a RSA key-pair.

The secure identity exchange, if used, proceeds as
follows. If client A were to request a secure identity
exchange of client B, A would include a 32-bit random
challenge value in its request to B. For B to prove its
identity to A, B must respond by signing with its private
key a string consisting of the challenge value and A’s
public key. A validates the signature using B’s public
key. The exchange also allows for public keys to be
communicated. The algorithm is described in [19], and
we have verified it by examining the eMule 0.50c source.

Since credits are persistent between instances of an
eMule client, eMule persistently stores a record for each
user hash it has verified. The record also includes the
remote client’s public key, along with the number of bytes
transferred. This data is stored in the file clients.met
on the user’s computer.

Our modified eMule client that supports tagging
separately logs its own user hash and public key each
time it is used by an investigator. When the investigator
attempts to make a case for obtaining a warrant, our
modified eMule client will always offer a secure identity
exchange to the suspect’s client. The remote client default
to storing the investigator’s user hash and public key
in its clients.met file. When agents seize a system,
the clients.met file can be recovered. Using tools that
we have developed, agents can output clients.met
into a human-readable format, demonstrating that the
investigator’s user hash and public key have been stored.

In practice an investigator attempts to show that a
single user was able to download an entire file. Therefore
only two known values are stored on the remote system:
one user hash and one public key. The possibility of a false
positive due to collisions remains very small. The user
hash consists of 14 random bytes, or 2112 possibilities.
eMule evicts entries older than 150 days. Even with
24K distinct user hashes added per day, the odds of
a collision are approximately 1 in 290. Earlier versions of
eMule used a time-based seed to generate the user hash,
but that problem was corrected. The public key size is
2384, making key collisions even more unlikely than user
hashes. Furthermore, the user hash and public key are
stored as a pair, meaning both values would need to be
duplicated to generate a false positive, or 1 in 2474.

Because eMule clients expose their user hash and public

key, a suspect might claim that the tags were received
from another client impersonating the investigator. How-
ever, eMule will not store the user hash and public key
unless the source client has demonstrated that it can
sign a challenge with its corresponding private key. The
investigator can also provide the private key associated
with the public key, if necessary.

5.2.2 BitTorrent Peer Caches

In BitTorrent, peers may actively download and upload
a torrent for long periods of time. Files are large, and
the culture of BitTorrent users is such that continuing
to provide upload bandwidth for a torrent after the
download is complete is encouraged. To maintain state
for these active torrents across application restarts and
machine power-offs or suspensions, most BitTorrent
clients write relevant information to a cache file. Were this
caching disabled the performance of BitTorrent would be
worse, as clients would have to re-discover all peers after
application restarts. Removing this functionality from the
program is a poor defense (see Section 2.3).

The µTorrent client stores, per user-account and per
torrent, the IP addresses and ports of remote peers sharing
that torrent. (The same client, rebranded, is also the
BitTorrent client distributed by BitTorrent, Inc.) These
IPs and ports are stored in a file named resume.dat,
which is a bencoded dictionary (associative array). This
dictionary is keyed by the each active torrent’s infohash.
An infohash uniquely identifies the content of a torrent.
Each value associated with a torrent’s infohash is another
dictionary. In this dictionary, the key “peers6” encodes
128-bit IPv6 addresses and 16-bit ports of peers. IPv4
addresses are encoded as backwards-compatible IPv6
addresses. Crucially, these addresses and ports can be
provided not just from the tracker, but from other peers
through the peer-exchange extensions to the BitTorrent
protocol. In our observations, these values need not
represent reachable or even valid peers to be entered
into the peer cache, presumably because well-behaved
BitTorrent clients may ignore incoming connections.

In a similar fashion, Vuze stores, per user-
account, a cache file for each active torrent, named
<infohash>.dat. These bencoded dictionaries contain
a key explicitly describing the “tracker cache”, including
entries for “tracker peers” formatted as follows:
[ { ’ip’: ’83.253.52.14’,

’port’: 6886,
’prot’: 1,
’src’: ’Tracker’},

{ ’ip’: ’87.7.101.196’,
’port’: 54650,
’prot’: 1,
’src’: ’PeerExchange’}, ... ]

Here, even the source of the remote peer is listed,
so we can exclude all non-“PeerExchanged” addresses
from consideration when recovering tags, eliminating a
potential source of false positives.

In both cases, the address and port serve as a tag,
though we have observed that the order of the entries
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in the peer cache is not preserved in either case. In-
vestigators can use CIDR blocks of address space as
tags for IPv4 (e.g., leaving 24-bit subtags for /8 blocks;
see Figs. 7 and 8) and equivalent mechanisms in IPv6.
Investigators can rent small blocks of address space from
many different ISPs to prevent any particular address
range from appearing as obviously enforcement-related.

As currently implemented, neither peer caching mech-
anism requires the investigator to answer BitTorrent
protocol messages sent to the addresses that may be
stored, so the investigator can offer tags chosen from
the IPv6 or v4 address space as appropriate through the
peer exchange mechanism. If the implementation were
changed to require these remote tags to be valid, the
investigator could limit the tags to addresses under their
control, running appropriately modified p2p software.

5.2.3 DNS Cache Entries
By default, µTorrent performs reverse DNS lookups on
peer IPs once it has connected to them, and Vuze can be
configured to do likewise. Many p2p applications include
this feature. By performing this lookup, a p2p application
likely causes the host OS to cache the returned DNS entry
(supplied by LE with unique values). The existence of
this entry, and possibly the textual value of the DNS
entry itself, serve as a tag.

5.2.4 Vuze log files
Vuze (formerly Azureus) is among the most popular of
BitTorrent clients. It creates user-account-specific log files
for several purposes, including debugging. The log file
named debug_1.log (or debug_2.log, when rotated),
contains at least two obvious candidates for tagging.

The first arises from the evolving nature of the Bit-
Torrent protocol specification. In particular, the format
by which BitTorrent peers are identified, the peerID, is
not fully specified. To aid developers in discovering and
naming new BitTorrent implementations, peerIDs in un-
recognized formats are saved to the log. As these peerIDs
can be arbitrarily chosen 120-bit strings, they present an
ideal tagging target. Similarly, when peers give longer-
form identifiers, as permitted in both the LibTorrent
Extension Protocol and the Azureus Messaging Protocol,
unknown or mismatched identifiers are written to the
log file. Below is an example real entry, demonstrating a
large number of available tagging bits:
- [2009] Log File Opened for Vuze 4.2.0.2
- [0406 09:16:22] unknown_client [LTEP]:
"Unknown KG/2.2.2.0" / "KGet/2.2.2"
[4B4765742F322E322E32],
Peer ID: 2D4B47323232302D494775533761494E45425245

- [0406 09:22:14] mismatch_id [LTEP]:
"BitTorrent SDK 2.0.0.0" / "BitTorrent SDK 2.0"
[426974546F7272656E742053444B20322E30],
Peer ID:
2D4245323030302D275951473141595027646262

The second tagging opportunity arises from a more
subtle side channel present in the log. In particular events
for protocol errors can be triggered at timed intervals,
such that the inter-event timing forms a side channel. As

a simple example, one second between log entries could
represent an encoded 0, and two second delays a 1. Our
past work has shown that channels of this kind are not
difficult to implement and that data can be encoded and
sent reliably even in the absence of feedback about the
time on the receiving system [20]. This is made easier by
the fact that BitTorrent files are often large and clients
tend to stay on the network for a long period of time [21].

In both cases, these events are logged, but no infor-
mation is given to the user through the GUI. Both cases
clearly allow for tagging, as the log includes information
chosen by the remote peer. Further, these tags preserve
sequencing information, due to their explicit timestamps.

By default, these log files are rotated when they exceed
256 KB. We performed a two-week measurement experi-
ment using the current version of Vuze (5.0.0). Across five
separate instances each downloading ten active torrents,
we saw exactly three instances of unknown_client
messages, and an average of 63KB written to the each
instance’s log. I.e., the logs do not fill up quickly and false
positives are likely to be more rare than the conservative
experimental values selected for L in Figs. 7, 8, and 11.

5.2.5 OneSwarm
Prusty et al. [22] describe how OneSwarn peers store the
cryptographic keys of neighbors. There we claim a trivial
case of tagging: by recovering the keys when a warrant
is served, it can be confirmed that a system transferred
the data even if the data is no longer on the system.

5.2.6 Other Tagging Opportunities
Depending upon the p2p system and implementation,
there are other targets of opportunity. An obvious po-
tential target is the payload data being transmitted by
the p2p users. Most systems use some sort of hashing
scheme to prevent the deliberate poisoning of exchanges
with bad data. Still, if this data is ever written to disk,
for example as either as a temporary file or through the
VM system, traces of it may persist and be recoverable
through standard forensic means. Relative to the tag
sizes derived earlier, the immense size of even a relatively
small file system allocation unit could provide a definitive
tagging opportunity.

6 RELATED WORK

Existing methods of matching traffic to end systems
rely heavily on mutable identifiers such as IP addresses.
Alternatives use statistical properties that also are both
protean and easily falsified. For example, a remote peer’s
clock skew can be measured based on TCP headers [5],
[23], but this value is both affected by temperature
and easily falsified by modifying the TCP header. Even
radiometric identifiers [6] can be attacked [7]. These
statistical measures of a remote peer are not used by
practitioners because of these problems. Xie et al. [24]
also note that the ephemeral assignment of IP addresses
presents accountability problems in network security
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and incident response. In contrast, our focus is on law
enforcement, who would be unable to subpoena evidence
from a myriad ISPs and web sites to deploy that solution.
Our approach has a tunable error rate. Their approach
has the advantage of distinguishing many hosts at once.

Independently, Shebaro et al. [25] have proposed leav-
ing timing channel fingerprints in the log files of services
running on anonymized networks, such as Tor. Their
approach makes no assumption about what is logged,
other than the existence of timestamps that can later be
correlated to known events. In contrast, our approach
is to offer the remote service a chance to persistently
store known, pre-determined values that can be retrieved
when a warrant is issued.

Our user-centric approach differs from past measure-
ment and characterization of deployed p2p networks,
e.g., [11], [26]. These past works have focused on
performance-related metrics. In contrast, our focus is on
forensic investigation and criminal conduct. Finally, our
work employs well-known steganographic, watermarking
techniques, though we apply them to a novel scenario.

7 CONCLUSION

Remote, network-based investigation of crimes against
children is now the standard for law enforcement [10].
As we demonstrated using one year’s worth of data on
Gnutella, not all peer-to-Internet connections are one-to-
one. As cellular access grows in popularity as a high-
bandwidth medium, it will be more common to see
IPs re-assigned frequently. Moreover, users are often in
possession of many devices in one home, which poses
an important triage problem for investigators.

We have also presented a mechanism for more reliable,
verifiable identifiers that are stronger evidence in remote
investigations, easily meeting the standard of beyond a
reasonable doubt. We have provided a strong analytical
model demonstrating the applicability of tagging to this
problem. We have presented several distinct avenues for
tagging across applications and the OS.
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